Predictive Modeling Lab 2020-01-27

BSc in Data Science and Engineering

Eduardo García Portugués

We follow the materials at https://bookdown.org/egarpor/PM-UC3M/app-softw.html

Introduction to \mathbf{R}

- Simple computations
- Variables and assignment
- Vectors
- Some functions
- Matrices, data frames, and lists
- More on data frames
- Vector-related functions
- Logical conditions and subsetting
- Plotting functions
- Distributions
- Functions
- Control structures

Exercises

- Exercise 1. Compute:
$-\frac{e^{2}+\sin (2)}{\cos ^{-1}\left(\frac{1}{2}\right)+2}$. Answer: 2.723274 .
$-\sqrt{3^{2.5}+\log (10)}$. Answer: 4.22978.
$-\left(2^{0.93}-\log _{2}(3+\sqrt{2+\sin (1)})\right) 10^{\tan (1 / 3))} \sqrt{3^{2.5}+\log (10)}$. Answer: -3.032108.
- Exercise 2. Do the following:
- Store -123 in the variable y.
- Store the log of the square of y in z .
- Store $\frac{y-z}{y+z^{2}}$ in y and remove z.
- Output the value of y. Answer: 4.366734.
- Exercise 3. Do the following:
- Create the vector $x=(1,7,3,4)$.
- Create the vector $y=(100,99,98, \ldots, 2,1)$.
- Create the vector $z=(4,8,16,32,96)$.
- Compute $x_{2}+y_{4}$ and $\cos \left(x_{3}\right)+\sin \left(x_{2}\right) e^{-y_{2}}$. Answers: 104 and -0.9899925 .
- Set $x_{2}=0$ and $y_{2}=-1$. Recompute the previous expressions. Answers: 97 and 2.785875.
- Index y by $x+1$ and store it as \mathbf{z}. What is the output? Answer: z is c $(-1,100,97,96)$.
- Exercise 4. Do the following:
- Compute the mean, median and variance of y. Answers: 49.5, 49.5, 843.6869.
- Do the same for $y+1$. What are the differences?
- What is the maximum of y ? Where is it placed?
- Sort y increasingly and obtain the 5th and 76 th positions. Answer: c $(4,75)$.
- Compute the covariance between y and y. Compute the variance of y. Why do you get the same result?
- Exercise 5. Do the following:
- Create a matrix called M with rows given by $y[3: 5]$, y[3:5] ${ }^{\wedge} 2$, and $\log (y[3: 5])$.
- Create a data frame called myDataFrame with column names "y", "y2", and "logy" containing the vectors y[3:5], y [3:5] 2 and $\log (y[3: 5])$, respectively.
- Create a list, called 1, with entries for x and M. Access the elements by their names.
- Compute the squares of myDataFrame and save the result as myDataFrame2.
- Compute the log of the sum of myDataFrame and myDataFrame2. Answer:

```
## y y2 logy
## 1 9.180087 18.33997 3.242862
## 2 9.159678 18.29895 3.238784
## 3 9.139059 18.25750 3.234656
```

- Exercise 6. Do the following:
- Load the faithful dataset into R.
- Get the dimensions of faithful and show beginning of the data.
- Retrieve the fifth observation of eruptions in two different ways.
- Obtain a summary of waiting.
- Exercise 7. Do the following:
- Create the vector $x=(0.3,0.6,0.9,1.2)$.
- Create a vector of length 100 ranging from 0 to 1 with entries equally separated.
- Compute the amount of zeros and ones in $\mathrm{x}<-\mathrm{c}(0,0,1,0,1,0,0,1,0,1,0)$. Check that they are the same as in rev(x).
- Compute the vector $(0.1,1.1,2.1, \ldots, 100.1)$ in four different ways using seq and rev. Do the same but using : instead of seq. Hint: add 0.1.
- Exercise 8. Do the following for the iris dataset:
- Compute the subset corresponding to Petal. Length either smaller than 1.5 or larger than 2. Save this dataset as irisPetal.
- Compute and summarize a linear regression of Sepal.Width into Petal.Width + Petal.Length for the dataset irisPetal. What is the R^{2} ? Solution: 0.101.
- Check that the previous model is the same as regressing Sepal.Width into Petal.Width + Petal.Length for the dataset iris with the appropriate subset expression.
- Compute the variance for Petal. Width when Petal. Width is smaller or equal that 1.5 and larger than 0.3. Solution: 0.1266541.
- Exercise 9. Do the following:
- Plot the faithful dataset.
- Add the straight line $y=110-15 x$ (red).
- Make a new plot for the function $y=\sin (x)$ (black). Add $y=\sin (2 x)$ (red), $y=\sin (3 x)$ (blue), and $y=\sin (4 x)$ (orange).
- Exercise 10. Do the following:
- Compute the $90 \%, 95 \%$ and 99% quantiles of a F distribution with df $1=1$ and df2 = 5. Answer: c (4.060420, 6.607891, 16.258177).
- Plot the distribution function of a $\mathcal{U}(0,1)$. Does it make sense with its density function?
- Sample 100 points from a Poisson with lambda $=5$.
- Sample 100 points from a $\mathcal{U}(-1,1)$ and compute its mean.
- Plot the density of a t distribution with $\mathrm{df}=1$ (use a sequence spanning from -4 to 4). Add lines of different colors with the densities for $\mathrm{df}=5$, $\mathrm{df}=10$, $\mathrm{df}=50$, and $\mathrm{df}=100$. Do you see any pattern?
- Exercise 11. Do the following:
- Create a function that takes as argument n and returns the value of $\sum_{i=1}^{n} i^{2}$.
- Create a function that takes as input the argument N and then plots the curve ($n, \sum_{i=1}^{n} \sqrt{i}$) for $n=1, \ldots, N$. Hint: use sapply.
- Exercise 12. Do the following:
- Compute $\mathbf{C}_{n \times k}$ in $\mathbf{C}_{n \times k}=\mathbf{A}_{n \times m} \mathbf{B}_{m \times k}$ from \mathbf{A} and \mathbf{B}. Use that $c_{i, j}=\sum_{l=1}^{m} a_{i, l} b_{l, j}$. Test the implementation with simple examples.
- Create a function that samples a $\mathcal{N}(0,1)$ and returns the first sampled point that is larger than 4.
- Create a function that simulates N samples from the distribution of $\max \left(X_{1}, \ldots, X_{n}\right)$ where X_{1}, \ldots, X_{n} are iid $\mathcal{U}(0,1)$.
- Exercise 13. Create a routine for approximating by Monte Carlo integration the following integrals:
$-\int_{0}^{1} x^{2} \mathrm{~d} x=1 / 3$.
$-\int_{1}^{5} \log (x) \mathrm{d} x=\sin (5)-\sin (1)$.
$-\int_{-1}^{1} \int_{-1}^{1} x y^{2} \mathrm{~d} x \mathrm{~d} y=0$.
$-\int_{-1}^{1} \int_{-1}^{1} \sin (x y) \mathrm{d} x \mathrm{~d} y=0$.
- Exercise 14. Create a function that implements the Kolmogorov-Smirnnov test as described in the exercise in https://bookdown.org/egarpor/PM-UC3M/app-ext-ht.html
- Exercise 15. Create a routine that implements the bisection method. It must find the (unique) root $f\left(x^{*}\right)=0, x^{*} \in[0,1]$ of an arbitrary function $f:[0,1] \rightarrow \mathbb{R}$ such that $\operatorname{sign}(f(0)) \neq \operatorname{sign}(f(1))$. The routine must take as input the function f and the maximum number of iterations N of the algorithm.

