Lógica de Primer Orden: Ejercicios de Unificación y Resolución (2019)

Ejercicio 1.

Si P(f(y, a), y, f(x, g(b))) y P(x, g(b), f(z, y)) son unificables, hallar el Unificador de Máxima Generalidad, justificando en cualquier caso cada paso del algoritmo UMG

Ejercicio 2.

Justificar si son unificables o no las siguientes parejas de fórmulas atómicas A y B. Caso de serlo, indíquese el UMG y la formula atómica resultado de su aplicación. Indicar por medio de una tabla los pasos principales de aplicación del algoritmo de unificación: cada línea de la tabla tiene que contener por lo menos (1) el valor de α en cada paso; (2) A α y B α ; (3) tA y tB.

```
A = R (f(x),f(x)); B = R(y,f(y))

A = T (u,f(x),x); B = T (g(z),z,a)
```

Ejercicio 3.

Determinar el resolvente que se obtendría al aplicar un paso de resolución a las siguientes cláusulas, así como el unificador de máxima generalidad necesario (indicando TODOS los pasos del algoritmo de unificación):

```
C1: P(x, f(x), g(f(x)), f(g(x))) \lor \neg Q(f(x), a, b)
C2: \neg P(y, f(g(z)), g(f(g(a))), w) \lor \neg R(y, z, f(w))
```

Ejercicio 4.

Calcular, si es posible, el UMG entre los siguientes dos átomos. Detallar tanto el procedimiento como el resultado final.

$$A = p(g(x),g(y),f(a,z))$$
 $B = p(y,z,f(x,g(z)))$

Ejercicio 5.

Encontrar, si existe, el unificador de máxima generalidad (UMG) de los siguientes pares de átomos F y G (x, y, z, v, w, t son nombres de variable). En cada paso (cada linea de la tabla) indicar, el unificador α obtenido hasta el momento (nota: no la ligadura) y la aplicación de α a F y G (no hace falta reescribirla si es igual a la del paso anterior).

```
(a) p ( g(a,f(y)), f(y), y ) p ( g(z,f(z)), f(f(z)), z )
(b) p ( y, z, x, f(y,z) ) p ( w, t, g(a,w), f(t, g(a, v)))
```

Ejercicio 6.

Para los siguientes pares de fórmulas atómicas encontrar, si existe, el unificador de máxima generalidad (UMG) detallando el proceso de obtención.

```
F \equiv p (g(x), x, g(h(t)), t) \qquad G \equiv p (y, h(z), y, b)
F \equiv q (x, h(x), h(h(f(z,a)))) \qquad G \equiv q (f(t,y), y, h(y))
```

Ejercicio 7.

Para cada una de las siguientes parejas de fórmulas atómicas determinar si son unificables o no y porqué; y caso de serlo, decir cuál es el unificador de máxima generalidad:

```
(a) P(f(x, y), g(y), a) P(f(t, z), t, z)

(b) Q(f(x), a, x) Q(f(g(y)), y, z)

(c) R(x, a, f(x, y)) R(g(z), t, f(z, b))
```

Ejercicio 8.

Aplicar el algoritmo de unificación al siguiente par de átomos A y B. En cada línea de la tabla tiene que aparecer, al menos, (1) el valor actual de la sustitución alfa; (2) el resultado de aplicar la sustitución a A y B; y (3) los términos tA y tB.

$$A = r(x,a,f(g(c,y)))$$

$$B = r(g(w,w),z,f(x))$$

Ejercicio 9.

Dar todos los pasos de resolución posibles entre las siguientes dos cláusulas. Para los pasos posibles, detallar el proceso de obtención del UMG utilizado, y para los que no lo sean, justificar la respuesta.

C1:
$$P(x, f(y, x), g(y)) \lor \neg Q(x, f(y, x), g(y))$$

C2: $\neg P(z, f(w, g(w)), g(z)) \lor Q(z, f(w, g(w)), g(h(a)))$

Ejercicio 10.

Demuestra por resolución UMG (comenzando con la cláusula C7), que el siguiente conjunto de cláusulas es insatisfacible:

```
C1: ¬P(x) ∨ ¬Q(y,z,w) ∨ ¬R(x,w) ∨ R(x,y)

C2: Q(a,f(b),f(c))

C3: Q(x,x,f(x))

C4: ¬Q(x,y,z) ∨ R(x,z)

C5: P(a)

C6: ¬R(a,c) ∨ ¬S(f(x))

C7: S(f(x)) ∨ ¬P(x)
```

Ejercicio 11.

Determinar si son unificables los siguientes pares de fórmulas atómicas, encontrando, si existe, el unificador de máxima generalidad (umg) y detallando el proceso de obtención del umg.

```
(a) A: P(g(x),x,g(t),t) B: P(y,h(z),z,b) siendo x,y,z,t variables y h,g funciones (b) A: Q(h(x),g(x,z),z) B: Q(h(t),g(y,h(y)),t) siendo x,y,z,t variables y g,h funciones
```

Ejercicio 12.

Dado el conjunto de cláusulas:

```
C1: ¬B(x) ∨ M(x)

C2: ¬M(x) ∨ E(b,x) ∨ A(b,x)

C3: ¬M(x) ∨ ¬A(x,x)

C4: ¬D(x,y) ∨ ¬A(y,x)

C5: A(f(x),x)

C6: D(a,b)

C7: B(a)

C8: ¬E(b,a)
```

Demostrar que dicho conjunto es insatisfacible mediante resolución con UMG, indicando en cada paso el unificador empleado.

Ejercicio 13.

(a) Decir si es unificable o no el siguiente par de átomos y, en caso afirmativo, dar el unificador más general, justificando adecuadamente la respuesta.

$$P(a,x,f(g(y)))$$
 $P(y,f(z),f(z))$

(b) Demostrar con el método de resolución con UMG que el siguiente conjunto de cláusulas es insatisfacible

```
C1: \neg P(x,x,g(y)) \lor \neg Q(x,g(y)) \lor R(y)

C2: \neg P(y,x,x) \lor \neg R(x)

C3: \neg Q(g(y),x) \lor P(x,x,y)

C4: Q(y,x)
```

Ejercicio 14.

Demostrar, por resolución con UMG, que el siguiente conjunto de cláusulas es insatisfacible:

```
C1: ¬P(x,y) ∨ ¬A(x) ∨ B(y)

C2: ¬P(x,y) ∨ ¬D(x) ∨ ¬B(f(y))

C3: ¬D(x) ∨ A(x)

C4: D(f(x)) ∨ D(f(y))

C5: P(x, f(x))
```

Ejercicio 15.

Estudiar por resolución con UMG si es insatisfacible el siguiente conjunto C de cláusulas, indicando en cada paso el unificador empleado:

```
C0: \neg p(x) \lor \neg r(x,y) \lor q(x)

C1: \neg d(x) \lor \neg r(x,y) \lor \neg q(y)

C2: \neg d(x) \lor p(x)

C3: d(f(x))

C4: d(a)

C5: r(x,f(x))
```

Ejercicio 16.

Demostrar, mediante el método de resolución, que la siguiente estructura deductiva es correcta:

```
T[ C1, C2, C3, C4 C5] \vdash \exists x \forall y (P(x) \lor T(x,y))
C1: Q(x) \lor R(x)
C2: R(x) \lor P(x) \lor \neg Q(f(x))
C3: R(x) \lor P(x) \lor T(x,y)
C4: \neg R(x)
C5: Q(a)
```

Ejercicio 17.

Demostrar que el siguiente conjunto es insatisfacible utilizando el método de resolución con UMG:

```
C1: P(f(x)) \lor \neg Q(x) \lor R(x)

C2: \neg P(f(x)) \lor S(g(y), y)

C3: P(y) \lor R(y) \lor \neg S(y, g(y))

C4: Q(x) \lor R(y)

C5: \neg S(x, y)

C6: \neg R(x)
```

Ejercicio 18.

Demostrar, mediante el método de resolución, que la siguiente estructura deductiva es correcta:

$$T[C1, C2, C3, C4] \vdash \exists x (\neg Q(x) \land \neg R(x))$$

$$C1: R(x) \lor P(x) \lor S(x)$$

$$C2: R(x) \lor P(x) \lor \neg Q(f(x))$$

$$C3: \neg P(x)$$

$$C4: \neg R(x)$$

Ejercicio 19.

Dado el siguiente conjunto de cláusulas:

```
C1: ¬t(y)

C2: p(x) ∨ t(x) ∨ ¬r(x, g(x))

C3: r(h(z), z) ∨ ¬p(h(z))

C4: t(y) ∨ ¬q(g(y)) ∨ p(y)

C5: ¬r(x,y)

C6: q(x) ∨ t(x)
```

- (a) probar que es insatisfacible por resolución input lineal con umg.
- (b) elegir {C2,C3,C4,C5,C6} como conjunto soporte, ¿garantiza que existe una resolución dirigida? Decir por qué.

Ejercicio 20.

Sea el conjunto de fórmulas siguiente:

A1:
$$\exists x P(x) \rightarrow \forall y Q(x, y)$$

```
A2: \exists x \exists y Q(x, y) \rightarrow P(g(y))
B: P(x) \rightarrow \forall x \exists y P(g(y))
```

- (1) Construir el conjunto de cláusulas correspondientes a las fórmulas anteriores.
- (2) Estudiar, utilizando el método de resolución, si T[A1,A2] ⊢ B.

Una vez comprobado, ¿sería posible realizar la demostración utilizando una derivación lineal?, ¿sería posible realizar la demostración utilizando una derivación input? y ¿una derivación dirigida?

Ejercicio 21.

Sea el conjunto de fórmulas siguiente:

```
A1: \forall x(P(x) \rightarrow \exists yQ(x, y))
A2: \forall x\forall y(Q(x, y) \rightarrow P(f(y)))
B: \forall x(P(x) \rightarrow \exists yP(f(y)))
```

- (1) Construir el conjunto de cláusulas correspondientes a las fórmulas anteriores.
- (2) Estudiar, utilizando el método de resolución, si T[A1,A2] ⊢ B.
- (3) Una vez comprobado, ¿sería posible realizar la demostración utilizando una derivación lineal?, ¿sería posible realizar la demostración utilizando una derivación input? y ¿una derivación dirigida?

Ejercicio 22.

Demostrar, por resolución con UMG, que el siguiente conjunto de cláusulas es insatisfacible:

```
C1: M(a,f(c),f(b))
C2: M(x,x,f(x))
C3: ¬ M(x,y,z) ∨ M(y,x,z)
C4: ¬ M(x,y,z) ∨ N(x,z)
C5: P(a)
C6: ¬ N(a,b)
C7: ¬ M(y,z,u) ∨ ¬ P(x) ∨ ¬ N(x,u) ∨ N(x,y) ∨ N(x,z)
```

Ejercicio 23.

Dado el conjunto de cláusulas:

```
C1: A(x) \lor \neg B(g(x)) \lor C(x)
C2: \neg C(x)
C3: A(x) \lor C(x) \lor \neg D(x,g(x))
```

```
C4: C(x) V¬D(x,y)
C5: B(x) V C(x)
C6: ¬A(f(x)) V D(f(x),x)
```

- (a) Demostrar que dicho conjunto es insatisfacible mediante resolución con UMG, indicando en cada paso el unificador empleado.
- (b) La refutación obtenida ¿es lineal?, ¿es input?. Justificar la respuesta.
- (c) Definir un conjunto soporte, con más de una cláusula, para que la refutación anterior sea dirigida. Justificar la respuesta.

El conjunto soporte anterior, ¿cumple la condición de completud?, ¿por qué?.

Ejercicio 24.

Considerar los siguientes conjuntos de cláusulas. Para cada uno, demostrar que no es satisfacible utilizando el método de resolución con UMG.

```
C_1:
         ¬p(a)
C 2:
         p(x) \vee q(x,x)
C_3:
         s(f(z)) \vee \neg q(w,f(z)) \vee r(z)
C_4:
         \neg r(b)
C_5:
         \neg p(f(x))
C_6:
         \neg s(f(b))
C_1:
         \neg C(a,g(f(x)))
C_2:
         A(x,y) \vee D(y,x)
C_3:
         B(z,y) \vee \neg A(a,x) \vee C(f(y),g(x))
C_4:
         \neg B(x,g(z)) \lor \neg B(f(y),y)
C_5:
         \neg C(y,g(z)) \lor B(y,z)
C_6:
         C(x,y) \vee \neg D(y,x)
```

Ejercicio 25.

Estudiar, utilizando el método de resolución, si T [A1, A2, A3] ⊢ B siendo:

```
A1: \forall x \neg \exists y ( \neg H(x,y) \land P(y) \land \neg T(y) )

A2: \forall x \exists y \forall z ( A(x,y) \land \neg T(y) \land (H(z,y) \lor T(x)) )

A3: \forall x \neg P(x)

B: \exists x \exists y \neg ( A(x,y) \land H(x,y) \rightarrow P(y) )
```

Ejercicio 26.

Dado el conjunto de cláusulas:

C1
$$\equiv \neg P(x,y) \lor \neg Q(x,y) \lor \neg R(y) C5 \equiv P(x,f(x))$$

C2 $\equiv \neg P(x,y) \lor Q(y,x) C6 \equiv P(f(x),x)$
C3 $\equiv \neg P(x,y) \lor S(y,x) C7 \equiv P(f(x),f(x))$
C4 $\equiv R(x) \lor \neg S(x,x)$

- (a) Demostrar que dicho conjunto es insatisfacible mediante resolución con UMG, indicando en cada paso de resolución el unificador empleado.
- (b) La refutación anterior, ¿es lineal?, ¿es input?
- (c) Si se definiera {C2, C3, C4} como conjunto soporte, la refutación anterior ¿sería dirigida?
- (d) Este mismo conjunto soporte ¿cumple la condición de completud de la resolución dirigida?

Ejercicio 27.

Dado el siguiente conjunto de cláusulas:

```
C1: ¬P(x) ∨ Q(x) ∨ ¬R(x, y)

C2: ¬D(x) ∨ ¬Q(y) ∨ ¬R(x, y)

C3: ¬D(x) ∨ P(x)

C4: D(f(x))

C5: D(a)

C6: R(x, f(x))
```

- (a) Demostrar que es insatisfacible usando resolución.
- (b) La refutación que se ha obtenido ¿es lineal? ¿es input?
- (c) ¿Qué condición la haría dirigida? Justificar las respuestas.

Ejercicio 28.

Aplicar la factorización, de todas las formas posibles (es decir, generando todos los posibles factores), a la siguiente cláusula:

$$q(x,f(y)) \lor p(a,g(z,z),z) \lor p(z,w,y) \lor p(f(b),f(c),y) \lor q(z,f(g(w,w)))$$

Ejercicio 29.

Dado el siguiente conjunto de cláusulas:

C1:
$$A(x) \lor \neg B(g(x)) \lor C(X)$$

```
C2: \negC(x)

C3: \negE(x,g(x)) \lor A(x) \lor C(x)

C4: C(x) \lor \negD(x,y)

C5: B(x) \lor C(x)

C6: \negA(f(x)) \lor D(f(x),x)
```

- (a) Demostrar que es insatisfacible usando resolución.
- (b) La refutación obtenida ¿es lineal? ¿es input? ¿qué elección de cláusulas objetivo la haría dirigida? Justificar las respuestas.

Ejercicio 30.

Demostrar por Resolución con UMG que la fórmula $\neg E(s(a),s(s(a)))$ se deduce a partir del siguiente conjunto de cláusulas:

```
C1: N(a)
C2: ¬N(x) ∨ N(s(x))
C3: ¬N(x) ∨ ¬E(a,s(x))
C4: ¬N(x) ∨ ¬N(y) ∨ ¬E(s(x),s(y)) ∨ E(x,y)
C5: E(f(x,a),x)
C6: E(s(f(x,s(y))),f(s(x),s(y))
```

Ejercicio 31.

Demostrar que el siguiente conjunto de cláusulas es insatisfacible mediante resolución con UMG, indicando en cada paso el unificador empleado:

```
C1: ¬Q(x) ∨ P(x) ∨ P(f(a))

C2: ¬P(x) ∨ ¬S(x,x)

C3: ¬P(x) ∨ R(b,x) ∨ S(b, x)

C4: ¬T(x,y) ∨ ¬S(y,x)

C5: ¬R(b,f(a))

C6: S(f(x),x)

C7: T(f(a),b)

C8: Q(f(x))
```