4 Convex sets. Separation

4.1 Review of topological concepts

DEFINITIONS. Let S C R”.

e Open ball with centre a € R" and radius €:

Be(a) ={xeR":||x—al <&}

e The complement of a set S is 0S := {a ¢ S}

o A point a c R" is an interior point of S iffde > 0: B;(a) C S
o int(S) :={a is interior point of S}

e S isopen iff S = int(S)

e A point a € R" is an exterior point of S iff 3¢ > 0: B,(a) C (S

e A point a € R" is a boundary point of S iff any B¢(a), where € > 0, contains points
in both S and CS

e 05 :=1{a is a boundary point of S}
e The closure of S iscl(S) :=int(S)UdS

o S isclosed iff S = cl(S), ie., iff0S C S
e S CR" s bounded iff AR : S C Bg(0) /;:E—T’:Z
e S CIR" ;s compact iff it is closed and bounded
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LEMMA 1. S is closed < for any convergent sequence {x,}?>., in S, its limit point x € S

THEOREM 1 (BOLZANO-WEIERSTRASS). Every sequence {x,}%>, in a compact set S C R"
has a subsequence {x }%icn Which converges to a point in S.

THEOREM 2 (WEIERSTRASS). A continuous and real-valued function f defined on a compact
set S C RR" attains its minimum and maximum, i.e., there is a point X € S such that
f(X) = minyes f(x) (and similarly for the max).
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