Examen de Econometría II (Junio de 2017) MODELO 4

NOME	RE	_GRUPO	
DNI: _	Firma:		
0.1 (sólo u problema	na respuesta es válida). Justi cuenta 2 puntos. Al final, deb	fique todas sus respuestas; en ca	rtada cuenta 0.3 y cada fallo resta aso contrario no se valorará. Cada capado y la hoja de lectura óptica. oras. ¡Buena suerte!
		CUESTIONES	
	l modelo $z_t = (W_t + W_{t-1} + W_t)$ elación de z_t ?	$\left(Y_{t-2} \right)/3, W_t \underset{\mathrm{iid}}{\sim} \mathcal{N} \left(0, 1 \right) \xi \mathrm{Cu\'{a}les} \mathrm{s} .$	son los tres primeros coeficientes de
(a)	$1, \frac{2}{3}, 0$		
(b)	$\frac{3}{4}, \frac{1}{2}, \frac{1}{4}$		
	$\frac{2}{3}, \frac{1}{3}, 0$		
	$\frac{3}{9}, \frac{3}{3}, \frac{2}{9}$		
	Justificación:		
	Justineación.		
2. Sea horiz	$(1 - \frac{4}{5}L)(1 - \frac{1}{5}L^4)Y_t = 2 + W$ conte de predicción tiende a interpretable de predicción tiende a interpretab	W_t , donde W_t es un ruido blanco finito?	. ¿Cuál es la predicción cuando el
(a)(b)(c)(d)	$ \frac{25}{2} \\ \frac{4}{25} $		

Justificación:

3. Sea el siguiente modelo VAR estimado (los p-valores ente paréntesis, debajo de los coeficientes estimados):

$$\begin{split} \widehat{Y}_t &= 0.3 + 0.75 Y_{t-1} + 0.25 x_{t-1}, \\ \widehat{X}_t &= 0.24 + 0.95 Y_{t-1} + 0.06 x_{t-1} \\ {}_{(0,01)} & {}_{(0,001)} & {}_{(0,02)} \end{split}$$

la vista de los resultados y consierando un nivel de significación del 5% , podemos decir que el sentido de Granger es:

- (a) Ni de X a Y ni de Y a X.
- (b) De Y a X, pero no de X a Y.
- (c) De X a Y, pero no de Y a X.
- (d) Ambos sentidos.

Justificación:

4. Si X es I(1) e Y es I(0), entonces los residuos de la regresión X = a + bY son:

- (a) Estacionarios
- (b) MA(1)
- (c) Son variables cointegradas
- (d) No estacionarios

Justificación:

5. Sea Z_t una serie estacionaria en sentido débil ¿Cuál de las siguientes afirmaciones es FALSA?

(a)
$$E(Z_t) = E(Z_{t-1})$$

(b)
$$Var(Z_t) = Var(Z_{t-1})$$

(c)
$$Cov(Z_t; Z_{t-1}) = Cov(Z_{t+1}; Z_t)$$

(d) $Cov(Z_t; Z_{t-1}) = Cov(Z_{t-1}; Z_{t-3})$

Justificación:

6. Sea el siguiente proceso:

$$Y_t = Y_{t-2} + a_t$$

Considera la representación $MA(\infty)$ del mismo $Y_t = \Pi(L)a_t$. Sean π_j los coefientes del polinomio $\Pi(L)$ para j = 0, 1, 2, 3... Señala cuál de las siguientes afirmaciones es verdad:

- (a) $\pi_j = 1$ para todo j
- (b) $\pi_j = 1$ si j es impar y $\pi_j = 0$ si j es par
- (c) $\pi_j = 1$ si j es par y $\pi_j = 0$ si j es impar
- (d) $\pi_j = 1 \text{ para } j \geqslant 2$

Justificación:

7. Supongamos que tenemos el modelo:

$$Y_t = \beta_0 + \beta_1 t + a_t$$

donde a_t es un proceso de ruido blanco de media 0 y varianza σ_a^2 . Considere ΔY_t y $\Delta^2 Y_t$, donde $\Delta = (1 - L)$ y L es el operador de retardos, entonces:

- (a) ΔY_t es estacionario en varianza y $\Delta^2 Y_t$ no es estacionario en varianza
- (b) ΔY_t no es estacionario en varianza y $\Delta^2 Y_t$ es estacionario en varianza
- (c) ΔY_t y $\Delta^2 Y_t$ son estacionarios en varianza y además $\sigma^2_{\Delta Y_t} \geqslant \sigma^2_{\Delta^2 Y_t}$
- (d) $\Delta {\bf Y}_t$ y $\Delta^2 {\bf Y}_t$ son estacionarios en varianza y además $\sigma^2_{\Delta Y_t} \leqslant \sigma^2_{\Delta^2 Y_t}$

Justificación:

8. Sea el modelo:

$$Y_t = \frac{(1 - 0.5L)L}{(1-L+0.25L^2)}X_t + a_t$$

donde X_t es exógena y ruido blanco con media 0 y varianza σ_X^2 y a_t es ruido blanco con media 0 y varianza 1. Entonces $Cov(Y_t, X_{t-1})$ es:

- (a) 0
- (b) 0,5
- (c) 1
- (d) 0,44

Justificación:

9. Dado el siguiente proceso

$$\Delta \Delta_4 x_t = 0.03 + a_t - 0.8 a_{t-2}$$

donde $\Delta = 1 - L$, $\Delta_4 = 1 - L^4$ y $a_t \sim RB(0, \sigma_a^2)$. Entonces:

- (a) La transformación estacionaria de x_t tiene una media igual a 0.03/(1-0.8).
- (b) La transformación estacionaria de x_t tiene una media igual a 0.
- (c) La función de autocorrelación de la transformación estacionaria de x_t tiene coeficientes correlaciones nulas a partir del retardo tres inclusive.
- (d) La función de autocorrelación de la transformación estacionaria de x_t tiene coeficientes correlaciones distintos de cero para los retardos 1,2 y 4.

Justificación:

10. Un político propone un modelo que relaciona un indicador de política económica, $ieco_t$, y la tasa de inflación, p_t Se sabe que $ieco_t$ es estacionaria y, además, que la inflación no causa a la política. El modelo para la relación entre ambas series viene dada por

$$p_t = 0.4p_{t-1} - 0.3ieco_{t-2} - 0.6ieco_{t-3} + a_t$$

donde $a_t \sim RB(0, \sigma_a^2)$. Señale la opción correcta:

- (a) El efecto contemporáneo y de un período sobre la inflación p_t de un cambio unitario en el indicador de política económica $ieco_t$ es 0 y 0.4, respectivamente.
- (b) La tasa de inflación es no eestacionaria por tanto no tiene sentido el análisis de función de transferencia que pretende aplicar el político.
- (c) El multiplicador de impacto total o ganancia de un cambio en el indicador de política es -0.8.
- (d) Los multiplicadores de impacto de order 0 (contemporáneo) y 1 son ambos 0, mientras que los de orden 2 y 3 son -0.3 y -0.72, respectivamente.

Justificación:			

PROBLEMAS

PROBLEMA 1

Estudiar el modelo estimado $Y_t = Y_{t-1} - \frac{1}{4}Y_{t-2} + W_t + \frac{1}{2}W_{t-1}$:

- 1. El modelo es estacionario e Invertible?
- 2. Identifique el modelo ARIMA.
- 3. Obtenga la representación $MA\left(\infty\right)$.
- 4. Obtenga la representación $AR(\infty)$.

PROBLEMA 2

Dos variables económicas X e Y están relacionadas por el siguiente modelo:

$$Y_t = \frac{0.3}{1 - 0.7L} X_t + u_t$$

Entonces:

- 1. Calcule e interprete el efecto en la serie y de un cambio unitario transitorio en x_t y cuál es el efecto si este cambio es permanente.
- 2. Si u_t es un AR(1) con parámetro $\phi=0,5.$ Incorpore esta estructura al modelo y analice su efecto en la función de transferencia,
- 3. Qué porcentaje del efecto total o ganancia se produce en los tres instantes posteriores un impulso unitario transitorio en T.