
Routing Lookups in Hardware at Memory Access Speeds
Pankaj Gupta, Steven Lin, and Nick McKeown

Computer Systems Laboratory, Stanford University
Stanford, CA 94305-9030

{pankaj, sclin, nickm}@stanford.edu

Abstract

Increased bandwidth in the Internet puts great demands on net-
work routers; for example, to route minimum sized Gigabit
Ethernet packets, an IP router must process about
packets per second per port. Using the “rule-of-thumb” that it
takes roughly 1000 packets per second for every 106 bits per sec-
ond of line rate, an OC-192 line requires routing look-
ups per second; well above current router capabilities. One
limitation of router performance is the route lookup mechanism.
IP routing requires that a router perform a longest-prefix-match
address lookup for each incoming datagram in order to determine
the datagram’s next hop. In this paper, we present a route lookup
mechanism that when implemented in a pipelined fashion in
hardware, can achieve one route lookup every memory access.
With current 50ns DRAM, this corresponds to approximately

 packets per second; much faster than current commer-
cially available routing lookup schemes. We also present novel
schemes for performing quick updates to the forwarding table in
hardware. We demonstrate using real routing update patterns that
the routing tables can be updated with negligible overhead to the
central processor.

1 Introduction

This paper presents a mechanism to perform fast longest-match-
ing-prefix route lookups in hardware in an IP router. Since the
advent of CIDR in 1993 [1], IP routes have been identified by a
<route prefix, prefix length> pair, where the prefix length is
between 0 and 32 bits, inclusive. For every incoming packet, a
search must be performed in the router’s forwarding table to
determine which next hop the packet is destined for. With CIDR,
the search may be decomposed into two steps. First, we find the
set of routes with prefixes that match the beginning of the incom-
ing IP destination address. Then, among this set of routes, we
select the one with the longest prefix. This is the route that we use
to identify the next hop.

Our work is motivated by the need for faster route lookups;
in particular, we are interested in fast, hardware-implementable
lookup algorithms. We desire a lookup mechanism that achieves
the following goals:

1) The lookup procedure should be easily implementable in
hardware using simple logic.

2) Ideally, the route lookup procedure should take exactly one

1.5 106×

10 106×

20 106×

memory access time.
3) If it takes more than one memory access, then (a) the number

of accesses should be small, (b) the number of accesses
should be bounded by a small value in all cases, and (c) the
memory accesses should occur in different physical memo-
ries, enabling pipelined implementations (and hence help us
achieve goal 2).

4) Practical considerations involved in a real implementation,
such as cost, are an important concern.

5) The overhead to update the forwarding table should be
small.

The technique that we present here is based on the following
assumptions:

1) Memory is cheap. A very quick survey at the time of writing

indicates that bytes of 60ns DRAM is avail-
able for about $50. The cost per byte is approximately halv-
ing each year.

2) The route lookup mechanism will be used in routers where
speed is a premium; for example those routers that need to
process at least 10 million packets per second.

3) On backbone routers there are very few routes with prefixes
longer than 24-bits. This is verified by an examination of the
MAE-EAST backbone routing tables [2]. A plot of prefix
length distribution is shown in Figure 1; note the logarithmic
scale on the y-axis. In this example, 99.93% of the prefixes
are 24-bits or less.

4) IPv6 is still some way off– IPv4 is here to stay for the time

16MB 224=

Figure 1: Prefix length distributions.

1 8 16 24 32
 1

 10

 100

 1000

 10000

100000

Prefix Length

N
u

m
b

e
r

o
f

R
o

u
te

s

MAE−EAST, 01/02/98

This work was funded by the Center for Integrated Systems at
Stanford University. Steven Lin is funded by an NSF Graduate
Research Fellowship. Nick McKeown is funded by the
Alfred P. Sloan Foundation, Sumitomo Electric Industries and a
Robert N. Noyce Faculty Fellowship.

being. Thus, a hardware scheme optimized for IPv4
routing lookups is useful today.

5) There is a single general-purpose processor participat-
ing in routing table exchange protocols and constructing
a full routing table (including protocol-specific informa-
tion such as route lifetime, etc. for each route entry).
The next hop entries from this routing table are down-
loaded by the general purpose processor into each for-
warding table, which are used to make per-packet
forwarding decisions.

In the remainder of the paper we discuss the construction and
usage of the forwarding tables, and the process of efficiently
updating the tables using the general-purpose processor.

2 Previous Work

The current techniques for performing longest matching pre-
fix lookups, for example CAMs [3] and Tries [4], do not
seem to be able to meet the goals set forth above. CAMs are
generally small (1K x 64 bits is a typical size), expensive,
and dissipate a lot of power when compared to DRAM.
Tries, in general, have a worst case searching time of 32
memory accesses (for a 32-bit IP address), leading to a
wasteful 32-stage pipeline if we desire one lookup per mem-
ory access time. Furthermore, if we wish to fully pipeline the
design, each layer of the trie needs to be implemented in a
different physical memory. This leads to problems because
the memory cannot be shared among layers; it could happen
that a single layer of the trie exhausts its memory while other
layers have free space.

Label swapping techniques, including IP Switching [5]
and Multiprotocol Label Swapping (MPLS) [6] have been
proposed, to replace the longest-prefix match with a simple
direct-lookup based on a fixed-length field. While these con-
cepts show some promise, they also require the adoption of
new protocols to work effectively. In addition, they do not
completely take away the need for routing lookups.

Recently, several groups have proposed novel data
structures to reduce the complexity of longest-prefix match-
ing lookups [7][8]. These data structures and their accompa-
nying algorithms are designed primarily for implementation
in software, and cannot guarantee that a lookups will com-
plete in one memory-access-time.

We take a different, more pragmatic approach that is
designed for implementation in dedicated hardware. As
mentioned in assumption (1), we believe that DRAM is so
cheap (and continues to get cheaper), that using large
amounts of DRAM inefficiently is advantageous if it leads to
a faster, simpler, and cheaper solution. With this assumption
in mind, the technique that follows is so simple that it is
almost obvious. Our technique allows for an inexpensive,
easily pipelined route lookup mechanism that can process
one packet every memory-access time when pipelined.

Since the time of writing this paper, we have learned
that the lookup technique outlined here is a special case of an
algorithm proposed by V. Srinivasan and G. Varghese,
described in [9]. However, we take a more hardware-ori-

ented approach with a view to providing more direct benefit
to the designers and implementors of routing lookup
engines. In particular, we propose a novel technique for per-
forming routing updates in hardware.

The paper is organized as follows. Section 3 describes
the basic route lookup technique. Section 4 discusses some
variations to the technique which make more efficient use of
memory. Section 5 investigates how route entries can be
quickly inserted and removed from the forwarding tables,
and Section 6 provides a conclusion.

3 Proposed Scheme

We call the basic schemeDIR-24-8-BASIC — it makes use
of the two tables shown in Figure 2, both stored in DRAM.
The first table (calledTBL24) stores all possible route pre-
fixes that are up to, and including, 24-bits long. This table
has 224 entries, addressed from 0.0.0 to 255.255.255. Each
entry inTBL24 has the format shown in Figure 3. The sec-
ond table (TBLlong) stores all route prefixes in the routing
table that are longer than 24-bits.

Assume for example that we wish to store a prefix,X, in
an otherwise empty routing table. IfX is less than or equal to
24 bits long, it need only be stored inTBL24: the first bit of
the entry is set to zero to indicate that the remaining 15 bits
designate the next-hop. If, on the other hand, the prefixX is
longer than 24 bits, then we use the entry inTBL24
addressed by the first 24 bits ofX. We set the first bit of the
entry to one to indicate that the remaining 15-bits contain a
pointer to a set of entries inTBLlong.

In effect, route prefixes shorter than 24-bits are

Figure 2: ProposedDIR-24-8-BASIC architecture. The next
hop result comes from eitherTBL24 or TBLlong.

TBL24

TBLlong

0

23

31

Dstn
Addr.

24

8

Next
Hop224

entries

1 bit 15 bits
0 Next Hop

1 Index into 2nd table

If longest route with this 24-bit prefix is < 25 bits long:

If longest route with this 24 bits prefix is > 24 bits long:

15 bits1 bit

Figure 3: TBL24 entry format

expanded; e.g. the route prefix 128.23/16† will have
entries associated with it inTBL24, ranging

from the memory address 128.23.0 through 128.23.255. All
256 entries will have exactly the same contents (the next hop
corresponding to the routing prefix 128.23/16). By using
memory inefficiently, we can find the next hop information
within one memory access.

TBLlong contains all route prefixes that are longer than
24 bits. Each 24-bit prefix that has at least one route longer
than 24 bits is allocated 28=256 entries inTBLlong. Each
entry in TBLlong corresponds to one of the 256 possible
longer prefixes that share the single 24-bit prefix inTBL24.
Note that because we are simply storing the next-hop in each
entry of the second table, it need be only 1 byte wide (if we
assume that there are fewer than 255 next-hop routers– this
assumption could be relaxed if the memory was wider than 1
byte).

When a destination address is presented to the route
lookup mechanism, the following steps are taken:

1) Using the first 24-bits of the address as an index into the
first tableTBL24, we perform a single memory read,
yielding 2 bytes.

2) If the first bit equals zero, then the remaining 15 bits
describe the next hop.

3) Otherwise (if the first bit equals one), we multiply the
remaining 15 bits by 256, add the product to the last 8
bits of the original destination address (achieved by
shifting and concatenation), and use this value as a
direct index intoTBLlong, which contains the next-hop.

3.1 Examples

Consider the following examples of how route lookups are
performed on the table in Figure 4. Assume that the follow-
ing routes are already in the table: 10.54/16, 10.54.34/24,
10.54.34.192/26. The first route requires entries inTBL24
that correspond to the 24-bit prefixes 10.54.0 through
10.54.255 (except for 10.54.34). The 2nd and 3rd routes
require that the second table be used (because both of them
have the same first 24-bits and one of them is more than 24-
bits long). So, inTBL24, we insert a one followed by an
index (in the example, the index equals 123) into the entry
corresponding to the 10.54.34 prefix. In the second table, we
allocate 256 entries starting with memory location

. Most of these locations are filled in with the next
hop corresponding to the 10.54.34 route, but 64 of them
(those from to) are
filled in with the next hop corresponding to the 10.54.34.192
route.

Now assume that a packet arrives with the destination
address 10.54.22.147. The first 24 bits are used as an index
into TBL24, and will return an entry with the correct next

† Throughout this paper, when we refer to specific examples, a
route entry will be written as dotted-decimal-prefix/prefix-
length. For example, 10.34.153/24 refers to a 24-bit long route
with prefix (in dotted decimal) of 10.34.153.

224 16– 256=

123 256×

123 256×() 192+ 123 256×() 255+

hop (A). If a second packet arrives with the destination
address 10.54.34.23, the first 24 bits are used as an index
into the first table, which indicates that the second table must
be consulted. The lower 15 bits of the entry (123 in this
example) are combined with the lower 8 bits of the destina-
tion address, and used as an index into the second table.
After two memory accesses, the table returns the next hop
(B). Finally, let’s assume that a packet arrives with the desti-
nation address 10.54.34.194. Again,TBL24 indicates that
TBLlong must be consulted, and the lower 15 bits of the
entry are combined with the lower 8 bits of the address to
form an index into the second table. This time the index an
entry associated with the 10.54.34.192/26 prefix (C).

We recommend that the second memory be about
1MByte in size. This is inexpensive and has enough space
for 4096 routes longer than 24 bits. (To be precise, we can
store 4096 routes longer than 24 bits with distinct 24-bit pre-
fixes.) We see from Figure 1 that the number of routes with
length above 24 is much smaller than 4096 (only 28 for this
router). Because we use 15 bits to index into the second
table, we can, with enough memory, support 32K distinct 24-
bit-prefixed long routes with prefixes longer than 24 bits.

As a summary, let’s review some of the pros and cons
associated with the basicDIR-24-8-BASICscheme.

Pros:

1) Although (in general) two memory accesses are

Figure 4: Example of two tables containing three routes.

Entry

10.54.0

10.54.34

10.55.0

10.53.255

10.54.1

10.54.33

10.54.35

10.54.255

0

1

0

0

0

0

A

123

A

A

A

A

TBL24:

123*256

123*256+1

123*256+2

123*256+191

123*256+192

123*256+193

123*256+255

124*256

B

C

B

C

C

B

C

B

TBLlong:
Entry

256 entries
allocated to

10.54.34

Number: Contents: Number: Contents:

Key to table entries:
A = 10.54/16
B = 10.54.34/24
C = 10.54.34.192./26

prefix

required, these accesses are in separate memories,
allowing the scheme to be pipelined.

2) Except for the limit on the number of distinct 24-bit-pre-
fixed routes with length greater than 24 bits, this infra-
structure will support an unlimited number of routes.

3) The total cost of memory in this scheme is the cost of
33 MB of DRAM. No exotic memory architectures are
required.

4) The design is well-suited to hardware implementation.

5) When pipelined, packets per second can be
processed with currently available 50ns DRAM. The
lookup time is equal to one memory access time.

Cons:

1) Memory is used inefficiently.
2) Insertion and deletion of routes from this table may

require many memory accesses. This will be discussed
in detail in Section 5.

4 Variations on the theme

There are a number of refinements that can be made to the
basic technique. In this section, we discuss two variations
that decrease the memory size while adding one or more
pipeline stages.

Adding an intermediate “length” table: Observe that, of
those routes longer than 24 bits, very few are a full 32 bits.
In the basic scheme, we allocated an entire block of 256
entries for each routing prefix longer than 24 bits. For exam-
ple, if we insert a 26-bit prefix into the table, 256 entries in
TBLlong are used although only four are required.

We can improve the efficiency ofTBLlong using a
scheme calledDIR-24-8-INT. In addition to the two tables
TBL24 andTBLlong, DIR-24-8-INT maintains an additional
“intermediate” table,TBLint. Basically, by using one addi-
tional level of indirectionTBLint allows us to use a smaller
number of entries inTBLlong. To do this, we store an i-bit
long index (where) value inTBL24, instead of the 15-
bit value used in the basic scheme. The new index points to
an intermediate table (TBLint) with entries as shown in
Figure 5; for example, if , TBLint contains 4096
entries. Each entry inTBLint is pointed to by exactly one
entry inTBL24, and therefore corresponds to a unique 24-bit
prefix. TBLint entries contain a 20-bit index into the final
table (TBLlong), as well as a length field. The index is the
absolute memory address inTBLlong at which the set of
entries associated with this 24-bit prefix begins. The length
field indicates the longest route with this particular 24-bit
prefix (encoded in three bits since it must be in the range 25-
32). The length field also indicates how many entries in
TBLlong are allocated to this 24-bit prefix. For example, if
the longest route with this prefix is a 30-bit route, then the
length field will indicate 6 (30-24), andTBLlong will have

20 106×

i 15<

2i

i 12=

 entries allocated to this 24-bit prefix.
To clarify, consider the example in Figure 6. Assume

that the routes 10.78.45.128/26 and 10.78.45.132/30 are
stored in the table. The first table’s entry corresponding to
10.78.45 will contain an index to an entry inTBLint (in the
example, the index equals 567). Entry 567 inTBLint indi-
cates a length of 5, and an index intoTBLlong (in the exam-
ple, the index equals 325) pointing to 64 entries. One of
these entries, the 33rd, contains the next hop for the
10.78.45.132/30 route. Entry 32 and entries 34 through 47
will contain the next hop for the 10.78.45.128/26 route. The
others will contain the next-hop value designated to mean
“no entry”.

The modification requires an additional memory access,
extending the pipeline to three stages, but saves some space
in the final table by not expanding every “long” route to 256
entries.

Multiple table scheme: Another modification can be made
to reduce memory usage, with the addition of a constraint.
For simplicity, we present this scheme as an extension of the
two table scheme (DIR-24-8-BASIC) presented earlier. In
this scheme, calledDIR-n-m, we extend the original scheme

26 64=

index into 2nd table max length
3 bits20 bits

Figure 5: TBLint Entry Format

10.78.451 567

567 6 325

Len
Entry

Entry #

325

325+1

325+32

325+33

325+34

325+31

325+47

325+48

325+63

B

A

A

A

Figure 6: “Intermediate Table” scheme

TBL24 TBLlong

TBLint

64
 e

nt
rie

s
al

lo
ca

te
d

to
 1

0.
78

.4
5

pr
efi

x

Entry #Contents Contents

Cont

Key to table entries:
A = 10.78.45.128/26
B = 10.78.45.132/30

 #

to use three smaller tables, instead of one large table
(TBL24) and one small table (TBLlong). The aim is to split
the 32-bit space so as to minimize memory usage.

Let us replace tablesTBL24 and TBLlong in scheme
DIR-24-8-BASIC by a 221 entry table (the “first” table,
TBLfirst21), another 221 entry table (the “second” table,
TBLsec21), and a 220 entry table (the “third” table,
TBLthird20).

The first 21 bits of the packet’s destination address are
used to index intoTBLfirst21, which has entries of width 19
bits. The first bit of the entry will, as before, indicate whether
the rest of the entry can be used as the “next-hop” identifier,
or if the rest of the entry must be used as an index into
another table (TBLsec21 in this case).

If the rest of the entry inTBLfirst21 is used as an index,
we concatenate this 18-bit index with the next 3 bits (bit
numbers 22 through 24) of the packet’s destination address,
and use this concatenated number as an index into
TBLsec21. TBLsec21 has entries of width 13 bits. As before,
the first bit indicates whether the rest of the entry can be con-
sidered as a “next-hop” identifier, of if the rest of the entry
must be used as an index into the third table (TBLthird20).

Again, if the rest of the entry must be used as an index,
we use this value, concatenated with the last 8 bits of the
packet’s destination address, to index intoTBLthird20.

TBLthird20, like TBLlong, contains entries of width 8
bits, storing the next-hop identifier. These three tables are
shown in Figure 7 (with and in this case).

The DIR-21-3 has the advantage that only 9 MB of
memory is required: bits.
The disadvantage is that we have added another constraint to
the system. In addition to only supporting 4096 routes of
length 25 or greater with distinct 24-bit prefixes, we can now
only support routes of length 22 or greater, with distinct
21-bit prefixes. Although this constraint is easily met in cur-
rent routing environments, in the long term this constraint
may pose a problem.

The scheme can, of course, be extended to an arbitrary
number of table levels, at the cost of an additional constraint
per additional table level. Table 1 indicates the total amount
of memory that would be required for various numbers of
table levels.† Although not shown in the table, memory

n 21= m 3=

221 19⋅() 221 13⋅() 220 8⋅()+ +

218

requirements vary significantly with the choice of the num-
ber of bits to use per level. Table 1 shows only thelowest
memory requirement. As an alternative, a three level split
using (16,8,8) bits per level requires 105 MBytes.

As we increase the number of levels, we achieve dimin-
ishing memory savings coupled with increased hardware
logic complexity to manage the deeper pipeline.

5 Routing Table Updates

As the topology of the network changes, new routing infor-
mation is disseminated among the routers, leading to
changes in routing tables. As a result of a change, one or
more entries must be added, updated, or deleted from the
table. Because the action of modifying the table can interfere
with the process of forwarding packets, we need to consider
the frequency and overhead caused by changes to the table.
Shortly, we will consider a number of different techniques
for updating the routing table: each comes with a different
cost to the forwarding function.

But first, let’s consider how often routing tables are

† For the figures in this table, we assume that at each level, only
 routes can be accommodated by the next higher level

table, except thelast table, which we assume supports only
4096 routes. This is because it seems unlikely that there will be
a need to support more than 4096 routes of length 25 bits or
greater, with distinct 24-bit prefixes.

Number
 of

Levels
Bits used per level

Min. Memory
Requirement

3 21, 3, and 8 9 MB

4 20, 2, 2, and 8 7 MB

5 20, 1, 1, 2, and 8 7 MB

6 19, 1, 1, 1, 2, and 8 7 MB

Table 1: Memory required as a function of number of levels.

218

Figure 7: Three table scheme in the worst case, where the route is longer than (n+m) bits long. In this case, all three levels
must be used, as shown.

Index

First (2n entry) table.

address as index.

Second table. Use index
“ i” concatenated with nextm bits of

 destination address as index.

1

Third table. Use index “j” concatenated
with last 32-n-m bits of destination address

as index into this table.

1stn bits of
dest. addr. “ i”

Use firstn bits of destination

Index1
i concatenated

 “ j”with next m
bits of dest.

Next Hopj concatenated
with last 32-n-m

bits of dest.

i 2
m×

changed. Measurements and anecdotal evidence suggest that
routing tables change very frequently [11]. Trace data col-
lected from a major ISP backbone router† indicate that a few
hundred updates can occur per second. A potential drawback
of the 16-million entryDIR-24-8-BASIC scheme is that
changing a single route prefix can affect a large number of
entries in the table. For instance, if an 8-bit route prefix is
added to an empty forwarding table, this would require
changes to 216 consecutive forwarding entries. With our
data, if every routing table change affected entries, it
would lead to entry changes per second!‡

 Furthermore, changing the entries for one prefix is not
always as simple as changing consecutive entries; longer
prefixes create “holes” that must be avoided by the update
mechanism. This is illustrated in Figure 8 where a route
entry of 10.45/16 exists in the forwarding table. If the new
route entry 10/8 is added to the table, we need to modify
only a portion of the 216 entries described by the 10/8 route,
and leave the 10.45/16 “hole” unmodified.

In what follows, we focus on schemes to update the
large TBL24 table in theDIR-24-8-BASICscheme. The
smallerTBLlong table requires much less frequent updates
and is ignored here.

5.1 Dual Memory Banks

A simple but costly solution, this scheme uses two banks of
memory. Periodically, the processor creates and downloads a
new forwarding table to one bank of memory. During this
time (which in general will take much longer than one
lookup time), the other bank of memory is used for forward-
ing. Banks are switched when the new bank is ready. This
provides a mechanism for the processor to update the tables
in a simple and timely manner, and has been used in at least
one high-performance router [12].

† The router is part of the Sprint network. The trace had a total of
3737 BGP routing updates, with an average of 1.04 updates per
second and a maximum of 291 updates per second.

‡ In practice, of course, the number of 8-bit prefixes is limited to
just 256, and it is extremely unlikely that they will all change at
the same time.

216

20 106×

216 24-bit prefixes
described by route 10/8

28 24-bit prefixes described
by route 10.45/16

All 224 possible

“Hole” in 10/8 route

Figure 8: A “hole” in consecutive forwarding entries.

24-bit prefixes

caused by 10.45/16

5.2 Single Memory Bank
In general, we can avoid doubling the memory by mak-

ing the processor do more work. The processor can calculate
exactly which entries in the hardware forwarding tables need
to be updated and can instruct the hardware accordingly. An
important consideration is: how many messages must flow
from the processor to update a route prefix? If the number of
messages is too high, then the performance will become lim-
ited by the processor. We now describe three different update
schemes, and compare their performance when measured by
the number of update messages that the processor must gen-
erate.

Update Mechanism 1:Row-Update.
In this scheme, the processor sends one message for each
entry that is changed in the forwarding table. For example, if
a route of 10/8 is to be added to a table which already has a
prefix of 10.45/16 installed, the processor will send

 separate messages to the hardware,
each message instructing the hardware to change the next
hop of the corresponding entry.

While this scheme is simple to implement in hardware,
it places a tremendous burden on the processor.

Update Mechanism 2:Subrange-Update.
The presence of “holes” partitions the range of updated
entries into a series of subranges. Instead of sending one
instruction per entry, the processor can find the bounds of
each subrange, and send one instruction per subrange. The
messages from the processor to the line cards are now equiv-
alent to “ChangeX entries starting atY to Z” whereX is the
number of entries in the subrange,Y is the starting entry
number, andZ is the new next-hop identifier. In our example
above, the updates caused by the new route addition could
have been performed with just two messages: update 10.0.0
through 10.44.255, and update 10.46.0 through 10.255.255.

This scheme works well when entries have few “holes”.
However, in the worst case many messages are still required:
it is possible (though unlikely) that every other entry must be
updated. An 8-bit prefix therefore requires up to 32,768
update messages, i.e. roughly 3.2 million update messages
per second.

Update Mechanism 3:One-Instruction-Update.
This scheme requires only one instruction from the processor

65536 256– 65280=

{

 {

{ }

}

}

Figure 9: The balanced parentheses property of prefixes.

10.0.0.0 10.255.255.255

10.1.192.0 10.1.192.255

10.1.0.0 10.1.255.255

Depth 3.........................

Depth 2...........

Depth 1....

for each updated prefix, regardless of the number of holes.
One simple way to do this is to include a five bit length field
in every table entry indicating the length of the prefix to
which the entry belongs.

Consider again our example of a routing table contain-
ing the prefixes 10.45/16 and 10/8. The entries in the “hole”
created by the 10.45/16 route contain 16 in the length field;
the other entries associated with the 10/8 route contain the
value 8. Hence, the processor only needs to send a single
message for each route update. The message would be simi-
lar to: “Change entries starting at numberX for a Y-bit long
route to next-hopZ.” The hardware then examines
entries beginning with entryX. For each entry whose length
field is less than or equal toY, the new next-hop is entered.
Those entries with length field greater thanY are left
unchanged. As a result, “holes” are skipped within the
updated range.

One problem is that a five bit length field needs to be
added to all 16 million entries in the table; an additional
10 MB (about 30%) of memory.

Update Mechanism 4: Optimized One-Instruction-
Update.
Fortunately, we can eliminate the length field from each pre-
fix entry in TBL24. First note that for any two distinct pre-
fixes, either one is completely contained in the other, or the
two prefixes have no entries in common. This structure is
very similar to that of parenthetical expressions where the
scope of an expression is delimited by balanced opening and
closing parentheses: for example, the characters “{” and “}”
used to delimit expressions in the ‘C’ programming lan-
guage.

Figure 9 shows an example with three “nested” route
prefixes. Suppose that we scan an expression having bal-
anced parentheses from a point with a nesting depthd. By
keeping track of the number of opening and closing paren-
theses seen so far, we can determine the current depth. This
can then be applied to performing route updates: the central
processor provides the hardware with thefirst memory entry
to be updated. The hardware scans the memory sequentially,
updating only those entries at depthd.

Under this scheme, each entry inTBL24 can be classi-
fied as one of the following types: an opening parenthesis
(start of route), a closing parenthesis (ending of route), no
parenthesis (middle of route), or both an opening and closing
parenthesis (if the route contains only a single entry). This

224 Y–

Depth = 4

Depth = 3

Depth = 2

Depth = 1

{
{
}

}
}{

}

Figure 10: Moving the parentheses markers.

}

A

{

{

classification can be represented by a 2-bit field in each
entry.

Care must be taken when a single entry inTBL24 corre-
spond to the start or end of multiple routes, as shown in Fig-
ure 10. With our 2-bit encoding, we cannot adequately
describe all the routes that begin and end at memory location
‘A’. The problem is readily fixed by shifting the opening and
closing markers to the start (end) of the first (last) entry in
memory that the route affects. The same update algorithm
can then be used without change.

Note that unlike the Row- and Subrange-update
schemes, this scheme requires a read-modify-write operation
for each scanned entry. This can be reduced to a parallel read
and write if the marker field is stored in a separate memory.

5.3 Simulation Results

To evaluate the different update schemes, we simulated the
behavior of each when presented with the sequence of rout-
ing updates collected from the ISP backbone router. We
evaluate the update schemes using two criteria: (i) The num-
ber of messages per second sent by the processor, and (ii)
The number of memory accesses per second required to be
performed by the hardware. The simulation results are
shown in Table 2.†

The results corroborate our intuition that the row-update
scheme puts a large burden on the processor: up to 17,545
messages per second. At the other extreme, the one-instruc-
tion-update scheme is optimal in terms of the number of
messages required to be sent by the processor, with a maxi-
mum of just 291. But unless we use a separate marker mem-
ory, it requires more than twice as many memory accesses as
the other schemes. However, this still represents less than
0.2% of the routing lookup capacity available from the
scheme. In this simulation, we find that the subrange-update
scheme performs well by both measures. The small number
of messages from the processor can be attributed to the fact
that the routing table contained few holes. We expect this to

† For the one-instruction-update (optimized scheme) we assume
that the extra 2-bits to store the opening/closing marker fields
mentioned above arenot stored in a separate memory.

Update
Scheme

of Msgs from
Processor per
second (Avg/

Max)

of Memory
Accesses per
second (Avg/

Max)

Row 43.4/17545 43.4/17545

Subrange 1.14/303 43.4/17545

One-
instruction

1.04/291 115.3/40415

Table 2: Simulation results for three update mechanisms

be the case for most routing tables in the near term. But it is
too early to tell whether routing tables will become more
fragmented, and contain more holes in the future.

6 Conclusions

The continued decreasing cost of DRAM means that it is
now feasible to perform an IPv4 routing lookup in dedicated
hardware in the time that it takes to execute a single memory
access. Today, this corresponds to approximately
lookups per second; enough to process the packets on a
20Gb/s line. The lookup rate will improve in the future as
memory speeds increase. The scheme operates by expanding
the prefixes and throwing lots of cheap memory at the prob-
lem. Yet still the total memory cost today is less than $100,
and will (presumably) continue to decrease by roughly 50%
each year. For those applications where low cost is para-
mount, we have mentioned several multilevel variations on
the basic scheme that use memory more efficiently.

 Using a trace of routing table updates from a major
backbone router, we find that care must be taken when
designing the hardware update mechanism. We have found
and evaluated two update mechanisms (Subrange-update and
One-instruction-update) that perform efficiently and quickly
in hardware with little burden on the central routing proces-
sor. Our results indicate that with either scheme, updates
steal less than 0.2% of the lookup capacity.

7 Acknowledgments

We would like to thank Quaizar Vohra and Mark Ross for
useful comments on a draft of this paper. We also thank
Sprint and Cisco Systems for providing the trace of routing
updates used in Section 5.

References
[1] Y. Rekhter, T. Li. “An Architecture for IP Address Allo-

cation with CIDR.”RFC 1518, Sept. 1993.
[2] Merit Networks, Inc. See http://www.merit.edu
[3] A. McAuley, P. Francis. “Fast Routing Table Lookup

Using CAMs.” Proc. IEEE INFOCOM 1993, Vol. 3,
pp 1382-1391, San Francisco, USA.

[4] W. Doeringer, G. Karjoth, M. Nassehi. “Routing on
Longest-Matching Prefixes.”IEEE/ACM Trans. Net-
working, Vol. 4, No. 1. Feb. 1996.

[5] P. Newman, T. Lyon, G. Minshall. “Flow Labelled IP: A
Connectionless Approach to ATM.”Proc. IEEE INFO-
COM 1996, pp. 1251-1260, San Francisco, USA.

[6] Y. Rekhter, B. Davie, D. Katz, E. Rosen, G. Swallow.
“Cisco Systems’ Tag Switching Architecture Overview.”
RFC 2105, February 1997.

[7] A. Brodnik, S. Carlsson, M. Degermark, S. Pink. “Small
Forwarding Tables for Fast Routing Lookups.”Proc.
ACM SIGCOMM 1997, pp. 3-14, Cannes, France.

[8] M. Waldvogel, G. Varghese, J. Turner, B. Plattner. “Scal-
able High-Speed IP Routing Lookups.”Proc. ACM SIG-
COMM 1997, pp. 25-36, Cannes, France.

20 106×

[9] V. Srinivasan and G. Varghese. “Efficient Best Matching
Prefix Using Tries.” pre-publication manuscript, January
1997.

[10] C. Labovitz, G. R. Malan, F. Jahanian. “Internet Rout-
ing Instability.” Proc. ACM SIGCOMM 1997, pp. 115-
126, Cannes, France.

[11] C.Partridge et al. “A Fifty Gigabit Per Second IP
Router,” Accepted for publication inIEEE/ACM Trans.
on Networking.

