Routing Lookups in Hardware at Memory Access Speeds

Pankaj Gupta, Steven Lin, and Nick McKeown
Computer Systems Laboratory, Stanford University
Stanford, CA 94305-9030
{pankaj, sclin, nickm}@stanford.edu

Abstract
3)

Increased bandwidth in the Internet puts great demands on n
work routers; for example, to route minimum sized Gigabi
Ethernet packets, an IP router must process atdix 10°
packets per second per port. Using the “rule-of-thumb” that i
takes roughly 1000 packets per second for eve‘?;bil@ per sec-
ond of line rate, an OC-192 line requirk@x 1P routing look-4
ups per second; well above current router capabilities. Or
limitation of router performance is the route lookup mechanisng
IP routing requires that a router perform a longest-prefix-matc
address lookup for each incoming datagram in order to determil

memory access time.

If it takes more than one memory access, then (a) the number
of accesses should be small, (b) the number of accesses
should be bounded by a small value in all cases, and (c) the
memory accesses should occur in different physical memo-
ries, enabling pipelined implementations (and hence help us
achieve goal 2).

Practical considerations involved in a real implementation,
such as cost, are an important concern.

The overhead to update the forwarding table should be
small.

the datagram’s next hop. In this paper, we present a route lookThe technique that we present here is based on the following
mechanism that when implemented in a pipelined fashion iassumptions:

hardware, can achieve one route lookup every memory acce
With current 50ns DRAM, this corresponds to approximately
20x 1P packets per second; much faster than current comme
cially available routing lookup schemes. We also present nov:
schemes for performing quick updates to the forwarding table i
hardware. We demonstrate using real routing update patterns t12)
the routing tables can be updated with negligible overhead to tl
central processor. 3)

1 Introduction

This paper presents a mechanism to perform fast longest-mat
ing-prefix route lookups in hardware in an IP router. Since th
advent of CIDR in 1993 [1], IP routes have been identified by
<route prefix, prefix length> pair, where the prefix length i54)
between 0 and 32 bits, inclusive. For every incoming packet,
search must be performed in the router’s forwarding table t
determine which next hop the packet is destined for. With CIDF
the search may be decomposed into two steps. First, we find t
set of routes with prefixes that match the beginning of the incon
ing IP destination address. Then, among this set of routes, \
select the one with the longest prefix. This is the route that we u
to identify the next hop.

Our work is motivated by the need for faster route lookups
in particular, we are interested in fast, hardware-implementab
lookup algorithms. We desire a lookup mechanism that achiewvi
the following goals:

1) The lookup procedure should be easily implementable in
hardware using simple logic.

2) Ideally, the route lookup procedure should take exactly one

This work was funded by the Center for Integrated Systems at
Stanford University. Steven Lin is funded by an NSF Graduate
Research Fellowship. Nick McKeown is funded by the
Alfred P. Sloan Foundation, Sumitomo Electric Industries and a
Robert N. Noyce Faculty Fellowship.

Memory is cheap. A very quick survey at the time of writing

indicates thal6MB = 224 bytes of 60ns DRAM is avail-
able for about $50. The cost per byte is approximately halv-
ing each year.

The route lookup mechanism will be used in routers where
speed is a premium; for example those routers that need to
process at least 10 million packets per second.

On backbone routers there are very few routes with prefixes
longer than 24-bits. This is verified by an examination of the
MAE-EAST backbone routing tables [2]. A plot of prefix
length distribution is shown in Figure 1; note the logarithmic
scale on the y-axis. In this example, 99.93% of the prefixes
are 24-bits or less.

IPVv6 is still some way off- IPv4 is here to stay for the time

Figure 1. Prefix length distributions.

Number of Routes

100000

MAE-EAST, 01/02/98

10000 - k!

1000 - k!

100 E!

10 E!

Il
16
Prefix Length

being. Thus, a hardware scheme optimized for IPv4 TBL24
routing lookups is useful today.
5) There is a single general-purpose processor participat—DgEn

ing in routing table exchange protocols and constructingAT r >
a full routing table (including protocol-specific informa- Next
tion such as route lifetime, etc. for each route entry). 224 TBLlon Hop
The next hop entries from this routing table are down- entries) -
loaded by the general purpose processor into each for-| 23
warding table, which are used to make per-packet 31
forwarding decisions. L= 8
In the remainder of the paper we discuss the construction ai Figure 2: ProposedIR-24-8-BASICarchitecture. The next
usage of the forwarding tables, and the process of efficient hop result comes from eith€BL24or TBLIong
updating the tables using the general-purpose processor.
2 Previous Work ented approach with a view to providing more direct benefit

to the designers and implementors of routing lookup

The current techniques for performing longest matching présngines. In particular, we propose a novel technique for per-

generally small (1K x 64 bits is a typical size), expensivethe hasic route lookup technique. Section 4 discusses some
and dissipate a lot of power when compared to DRAMygriations to the technique which make more efficient use of
Tries, in general, have a worst case searching time of 33emory. Section 5 investigates how route entries can be

memory accesses (for a 32-bit IP address), leading to @ickly inserted and removed from the forwarding tables,
wasteful 32-stage pipeline if we desire one lookup per menmynd Section 6 provides a conclusion.

ory access time. Furthermore, if we wish to fully pipeline the

design, each layer of the trie needs to be implemented in3 Proposed Scheme

different physical memory. This leads to problems because] .

the memory cannot be shared among layers; it could happdKe call the basic scheni#R-24-8-BASIC— it makes use

that a single layer of the trie exhausts its memory while othe?f the two tables shown in Figure 2, both stored in DRAM.

layers have free space. The first table (calledBL24) stores all possible route pre-
Label swapping techniques, including IP Switching [5]fixes trat are up to, and including, 24-bits long. This table

and Multiprotocol Label Swapping (MPLS) [6] have beenhas 22. entries, addressed from 0.0.0'to 255.255.255. Each

proposed, to replace the longest-prefix match with a simpl@ntry inTBL24has the format shown in Figure 3. The sec-

direct-lookup based on a fixed-length field. While these con@nd table TBLIong stores all route prefixes in the routing

cepts show some promise, they also require the adoption &Ple that are longer than 24-bits. -

new protocols to work effectively. In addition, they do not ~ Assume for example that we wish to store a prefon

completely take away the need for routing lookups. an o'FherWlse empty routing table Xfis less than or equal to
Recently, several groups have proposed novel datd? bits Iopg, it need only t_)e §tored‘ﬁL24 the f|r§t_b|t of .

structures to reduce the complexity of longest-prefix matchthe entry is set to zero to indicate that the remaining 15 bits

ing lookups [7][8]. These data structures and their accomp4lesignate the next-hop. If, on the other hand, the pxeix

nying algorithms are designed primarily for implementationlonger than 24 bits, then we use the entry TiBL24

in software, and cannot guarantee that a lookups will confddressed by the first 24 bitsXfWe set the first bit of the

plete in one memory-access-time. entry to one to indicate that the remaining 15-bits contain a
We take a different, more pragmatic approach that i@ointer to a set of entries WBLlong _

designed for implementation in dedicated hardware. As In effect, route prefixes shorter than 24-bits are

mentioned in assumption (1), we believe that DRAM is so

cheap (and continues to get cheaper), that using larg Figure 3: TBL24entry format

amounts of DRAM inefficiently is advantageous if it leads to

_afas_ter, simpler, ar_wd cheaper solutio_n. With_this assum_pt_iorllf longest route with this 24-bit prefix is < 25 bits long:

in mind, the technique that follows is so simple that it is

almost obvious. Our technique allows for an inexpensive,| |

easily pipelined route lookup mechanism that can process

one p_acket every memory-access time when pipelined. If longest route with this 24 bits prefix is > 24 bits long:
Since the time of writing this paper, we have learned i

that the lookup technique outlined here is a special case of a__*_| Index into 2nd table |

algorithm proposed by V. Srinivasan and G. Varghese, 1 bit 15 bits

described in [9]. However, we take a more hardware-ori-

Next Hop |
bit 15 bits

expanded; e.g. the route prefix 128.23/16ill have

224-16 = 256 entries associated with it iiBL24 ranging Key to table entries:
from the memory address 128.23.0 through 128.23.255. All A =10.54/16
256 entries will have exactly the same contents (the next hop B =10.54.34/24
corresponding to the routing prefix 128.23/16). By using C=10.54.34.192./2
memory inefficiently, we can find the next hop information TBL24: TBLIong:
within one memory access. Entry Entry
TBLIlongcontains all route prefixes that are longer thanNumber: Contents: Number: Contents:
24 bits. Each 24-bit prefix that has at least one route longe : : H :
than 24 bits is allocated®2256 entries inTBLlong Each 10.53 254 123256 | B
entry in TBLlong corresponds to one of the 256 possible DRSS
longer prefixes that share the single 24-bit prefiX&i24 10.54.0 O A f 123*256+1(B
Note that because we are simply storing the next-hop in eac
entry of the second table, it need be only 1 byte wide (if we 10.54.1 101 A 1237256+2| B
assume that there are fewer than 255 next-hop rotitthis : : H :
g}s/tsg)mptlon could be relaxed if the memory was wider than 1054330 A 123*256+191 B 256 entries
When a destination address is presented to the rout| 10.54.34(1| 123 123*256+192C a”f(():%g%;tlo
lookup mechanism, the following steps are taken: 105435/ 0] A 123*256+198C prefix
1) Using the first 24-bits of the address as an index into the : . : .
first tableTBL24 we perform a single memory read, : : . .
yielding 2 bytes. 10.54.255 0] A 123*256+25% C
2) Ifthe _first bit equals zero, then the remaining 15 bits 1055.0 - |— 124*256 |
describe the next hop.
3) Otherwise (if the first bit equals one), we multiply the H H : :

remaining 15 bits by 256, add the product to the last 8
bits of the original destination address (achieved by
shifting and concatenation), and use this value as a Figure 4. Example of two tables Containing three routes.
direct index intol BLIong which contains the next-hop.

31E | hop (A). If a second packet arrives with the destination
) xamples address 10.54.34.23, the first 24 bits are used as an index
Consider the following examples of how route lookups arénto the first table, which indicates that the second table must
performed on the table in Figure 4. Assume that the followbe consulted. The lower 15 bits of the entry (123 in this
ing routes are already in the table: 10.54/16, 10.54.34/2&xample) are combined with the lower 8 bits of the destina-
10.54.34.192/26. The first route requires entrieBi24 tion address, and used as an index into the second table.
that correspond to the 24-bit prefixes 10.54.0 througi\fter two memory accesses, the table returns the next hop
10.54.255 (except for 10.54.34). The 2nd and 3rd routed). Finally, let's assume that a packet arrives with the desti-
require that the second table be used (because both of th&@fion address 10.54.34.194. AgairBL24 indicates that
have the same first 24-bits and one of them is more than 24BLlong must be consulted, and the lower 15 bits of the
bits long). So, inTBL24 we insert a one followed by an entry are combined with the lower 8 bits of the address to
index (|n the examp|e, the index equa|s]_23) into the entrﬁprm an ind_ex into _the second table. This tlme the index an
corresponding to the 10.54.34 prefix. In the second table, wtry associated with the 10.54.34.192/26 prefix (C).
allocate 256 entries starting with memory locaton We recommend that the second memory be about
123x 256. Most of these locations are filled in with the next1MBYte in size. This is inexpensive and has enough space
hop corresponding to the 10.54.34 route, but 64 of therfPr 4096 routes longer than 24 bits. (To be precise, we can
(those from (123x 250 +192 to(123x 256 + 255) are sStore 4096 routes longer than 24 bits with distinct 24-bit pre-
filled in with the next hop corresponding to the 10.54.34.194ixes.) We see from Figure 1 that the number of routes with
route. length above 24 is much smaller than 4096 (only 28 for this
Now assume that a packet arrives with the destinatiofPuter). Because we use 15 bits to index into the second
address 10.54.22.147. The first 24 bits are used as an ind@®le, we can, with enough memory, support 32K distinct 24-
into TBL24 and will return an entry with the correct next bit-prefixed long routes with prefixes longer than 24 bits.
As a summary, let’s review some of the pros and cons
+ Throughout this paper, when we refer to specific examples, @SSociated with the badiiR-24-8-BASIGcheme

route entry will be written as dotted-decimal-prefix/prefix- ppqog-
length. For example, 10.34.153/24 refers to a 24-bit long route
with prefix (in dotted decimal) of 10.34.153. 1) Although (in general) two memory accesses are

required, these accesses are in separate memories,

allowing the scheme to be pipelined. TBL24 TBLlong
2) Except for the limit on the number of distinct 24-bit-pre- Entry # Contents Entry # Contents
fixed routes with length greater than 24 bits, this infra- : : : :
structure will support an unlimited number of routes. - -
3) The total cost of memory in this scheme is the cost of 10.78.4p1|56 325 -
33 MB of DRAM. No exotic memory architectures are : 325+1 || —
required. " "
4) The design is well-suited to hardware implementation. TBLint : :
5) When pipelined20x 10° packets per second can be Entry 325+31| — 3 x
processed with currently available 50ns DRAM. The # LenCon 325+32 | A So
N . . . oo
lookup time is equal to one memory access time. : : =
_ — AR 325+34) Al [E5
1) Memory is used inefficiently. : : - - fap=]
2) Insertion and deletion of routes from this table may : : o8
require many memory accesses. This will be discussed 325+47| A
in detail in Section 5. Key to table entries: | 325+48| —
i A =10.78.45.128/2
4 Variations on the theme B = 10'78'45'132/3} : :
There are a number of refinements that can be made to the 325+63| —
basic technique. In this section, we discuss two variations - -
that decrease the memory size while adding one or more : :

pipeline stages.

Adding an intermediate “length” table: Observe that, of Figure 6: “Intermediate Table” scheme

those routes longer than 24 bits, very few are a full 32 bits.)])]

In the basic scheme, we allocated an entire block of 256> = 64 entries allocated to this 24-bit prefix.

entries for each routing prefix longer than 24 bits. For exam- 10 clarify, consider the example in Figure 6. Assume

ple, if we insert a 26-bit prefix into the table, 256 entries ifhat the routes 10.78.45.128/26 and 10.78.45.132/30 are

TBLIongare used although only four are required. stored in th_e table._ The .fII’St table’s entry cor_respondmg to
We can improve the efficiency ofBLlong using a 10.78.45 will cpntam an index to an entryﬁBLln_t (nj th_e

scheme calledIR-24-8-INT In addition to the two tables €*X@mple, the index equals 567). Entry 567TBLint indi-

TBL24andTBLlong DIR-24-8-INTmaintains an additional Cat€s a length of 5, and an index ifi@Llong(in the exam-

“intermediate” tableTBLint Basically, by using one addi- P& the index equals 325) pointing to 64 entries. One of

tional level of indirectionTBLint allows us to use a smaller these entries, the 33rd, contains the next hop for the
number of entries iMBLIong To do this, we store arbit 10.78.45.132/30 route. Entry 32 and entries 34 through 47

long index (wheré < 15) value BL24 instead of the 15- will contain the next hop for the 10.78.45.128/26 route. The

bit value used in the basic scheme. The new index points f§1€rs will contain the next-hop value designated to mean

an intermediate tableTBLinY) with 21 entries as shown in noentry”. _ -
Figure 5: for example, if = 12 TBLint contains 4096 The modification requires an additional memory access,

entries. Each entry ifBLint is pointed to by exactly one €Xtending the pipeline to three stages, but saves some space
entry inTBL24 and therefore corresponds to a unique 24-bit" the final table by not expanding every “long” route to 256
prefix. TBLint entries contain a 20-bit index into the final €Ntres.

table TBLlIong, as well as a length field. The index is theMultiple table scheme: Another modification can be made
absolute memory address TiBLIong at which the set of to reduce memory usage, with the addition of a constraint.
entries associated with this 24-bit prefix begins. The lengtRor simplicity, we present this scheme as an extension of the
field indicates the longest route with this particular 24-bitwo table schemeDIR-24-8-BASIQ presented earlier. In

prefix (encoded in three bits since it must be in the range 2%is scheme, calleBIR-n-m we extend the original scheme
32). The length field also indicates how many entries in

TBLIlong are allocated to this 24-bit prefix. For example, if . .)
the longest route with this prefix is a 30-bit route, then the Figure 5: TBLint Entry Format
length field will indicate 6 (30-24), antBLlong will have

| index into 2nd table | maxlength]|
20 bits 3 bits

Seconq%\i\ X ZmE table. Use index

“i” concatenated with nextm bits of
destination address as index.

Third table. Use index ‘j” concatenated
with last 32-n-m bits of déstination address
as index into this table.

First (2" entry) table.

Use firstn bits of destination
address as index.

1stn bits of || 1/index I concatenated|, index j concatenated| Next Hop
dest. addr. “pr with next m “’ with last 32-n-m
bits of dest. bits of dest.

Figure 7: Three table scheme in the worst case, where the route is longem-th@rb(ts long. In this case, all three levels
must be used, as shown.

to use three smaller tables, instead of one large tab’
(TBL24 and one small tabléfBLIong. The aim is to split
the 32-bit space so as to minimize memory usage. of
Let us replace table$BL24 and TBLIong in scheme Levels
DIR-24-8-BASICby a 2! entry table (the “first” table,

Number Min. Memory

Bits used per level Requirement

TBLfirst2]), another 2! entry table (the “second” table, 3 21,3,and 8 9MB
TBLsec2), and a 20 entry table (the “third” table, 4 20,2, 2, and 8 7 MB
TBLthird20.

The first 21 bits of the packet’s destination address ar S) 20,1,1,2,and 8 7MB
used to index int@BLfirst21 which has entries of width 19 6 19.1.1,1,2 and 8 7 MB

bits. The first bit of the entry will, as before, indicate whethel
the rest of the entry can be used as the “next-hop” identifieTable 1: Memory required as a function of number of levels.
or if the rest of the entry must be used as an index int
another tableTBLsec21n this case).

If the rest of the entry iiBLfirst21is used as an index, requirements vary significantly with the choice of the num-
we concatenate this 18-bit index with the next 3 bits (biber of bits to use per level. Table 1 shows onlyltieest
numbers 22 through 24) of the packet’s destination addresmemory requirement. As an alternative, a three level split
and use this concatenated number as an index inusing (16,8,8) bits per level requires 105 MBytes.
TBLsec21. TBLsecHas entries of width 13 bits. As before, ~ As we increase the number of levels, we achieve dimin-
the first bit indicates whether the rest of the entry can be coishing memory savings coupled with increased hardware
sidered as a “next-hop” identifier, of if the rest of the entrylogic complexity to manage the deeper pipeline.
must be used as an index into the third tabR_third20. .

Again, if the rest of the entry must be used as an inde® Routing Table Updates

we use this value, concatenated with the last 8 bits of trAs the topology of the network changes, new routing infor-
packet's destination address, to index ifBLthird2Q mation is disseminated among the routers, leading to
_ TBLthird2q like TBLlong contains entries of width 8 -hanges in routing tables. As a result of a change, one or
bits, storing the next-hop identifier. These three tables al, e entries must be added updated, or deleted from the
shown in Figure 7 (witm = 21 anth = 3 inthis case). apje Because the action of modifying the table can interfere
The DIR-21-3 h.aglthe advanztiage that ozn(!y 9 MB of yith the process of forwarding packets, we need to consider
memory 1S requwe(_xz [19) + (277 LL3) + (27°LB) b'ts'_ the frequency and overhead caused by changes to the table.
The disadvantage is that we have added another constralmshomy, we will consider a number of different techniques

the system. In addition to only supporting 4096 routes Ofqr ndating the routing table: each comes with a different
length 25 or greater with distinct 24-bit prefixes, we can novg <t tg the forwarding function.

only support218 routes of length 22 or greater, with distinci But first, let's consider how often routing tables are
21-bit prefixes. Although this constraint is easily met in cur-
rent routing environments, in the long term this constrain
may pose a problem.

The scheme can, of course, be extended to an arbitra 218

T For the figures in this table, we assume that at each level, only
routes can be accommodated by the next higher level

number of table levels, at the cost of an additional constrait
per additional table level. Table 1 indicates the total amour
of memory that would be required for various numbers o
table levels’ Although not shown in the table, memory

table, except théast table, which we assume supports only
4096 routes. This is because it seems unlikely that there will be
a need to support more than 4096 routes of length 25 bits or
greater, with distinct 24-bit prefixes.

changed. Measurements and anecdotal evidence suggest 52 Single Memory Bank

Iroutt|r(1jgf tables ch_an?(SaPVEry I:Lequentl%/ﬁé;;]. ,[Tr&tlﬁetdita col- In general, we can avoid doubling the memory by mak-
ected from a major ackbone routedicate that a1ew ;. 40 processor do more work. The processor can calculate

hundred updgt_es can occur per second. A potenthl drawbag actly which entries in the hardware forwarding tables need
of the_ 16-m|_II|on entryDIR-_24-8-BASICscheme Is that to be updated and can instruct the hardware accordingly. An
Chaf‘g'”_g a single route preflx can_affect a_Iarge numbgr N portant consideration is: how many messages must flow
entries in the table. For msta_nce, if an 8'_b't route preflx_ ¥rom the processor to update a route prefix? If the number of
added to an]?empty foryvardlng taple, th's_WOUId_ requlremessages is too high, then the performance will become lim-
chang_es to cor_13ecutwe forwarding entries. With U ited by the processor. We now describe three different update
data, if every routing table change affect? entries, Igchemes, and compare their performance when measured by

|
would lead t020x 10° er_1try change; per second! . the number of update messages that the processor must gen-
Furthermore, changing the entries for one prefix is noérate

always as simple as changing consecutive entries; longer

prefixes create “holes” that must be avoided by the updatdpdate Mechanism 1:Row-Update

mechanism. This is illustrated in Figure 8 where a routén this scheme, the processor sends one message for each

entry of 10.45/16 exists in the forwarding table. If the newentry that is changed in the forwarding table. For example, if

route entry 10/8 is added to the table, we need to modif§ route of 10/8 is to be added to a table which already has a

only a portion of the ¥ entries described by the 10/8 route, prefix of 10.45/16 installed, the processor will send

and leave the 10.45/16 “hole” unmodified. 65536— 256= 65280 separate messages to the hardware,
In what follows, we focus on schemes to update th€ach message instructing the hardware to change the next

large TBL24 table in theDIR-24-8-BASICscheme. The hop of the corresponding entry.

smaller TBLIong table requires much less frequent updates ~ While this scheme is simple to implement in hardware,
and is ignored here. it places a tremendous burden on the processor.

Update Mechanism 2:Subrange-Update
5.1 Dual Memory Banks The presence of “holes” partitions the range of updated

A simple but costly solution, this scheme uses two banks 0efntrles into a series of subranges. Instead of sending one

memory. Periodically, the processor creates and downloadér};lstrucuon per entry, the processor can find the bounds of

new forwarding table to one bank of memory. During thiseach subrange, and send one instruction per subrange. The

time (which in general will take much longer than oneMmessages from the processor to the line cards are now equiv-

lookup time), the other bank of memory is used for forwardf”1|ent to “Chang'e(eptrles starting at’.to z Whel’e.X Is the
umber of entries in the subrangéjs the starting entry

ing. Banks are switched when the new bank is ready. Thid

provides a mechanism for the processor to update the table mber, and is the new next-hop identifier. In our e.>§ample
in a simple and timely manner, and has been used in at le ove, the updates cau;eq by the new route addition could
one high-performance router [12]. ave been performed with just two messages: update 10.0.0
through 10.44.255, and update 10.46.0 through 10.255.255.
This scheme works well when entries have few “holes”.
However, in the worst case many messages are still required:
it is possible(though unlikely) that every other entry must be
updated. An 8-bit prefix therefore requires up to 32,768

Figure 8: A “hole” in consecutive forwarding entries.

[

J~ |28 24-bit prefixes describe . -3
by route 10.45/16 update messages, i.e. roughly 3.2 million update messages
per second.
* Update Mechanism 3:0ne-Instruction-Update.
I \ | This scheme requires only one instruction from the processor
All 2%* possibld 216 24-bit prefixes
24-bit prefixes described by route 10/8 Figure 9: The balanced parentheses property of prefixes.
O 08 routes 10.1.192.0 10.1.192.255
caused by 10.45/1% Depth 3......ccc...lis {J_i e
_ _ Depth 2......... 1 _0.1|.0.0 \ \4]]0.1.255.255
t The router is part of the Sprint network. The trace had a total of {
3737 BGP routing updates, with an average of 1.04 updates per x
second and a maximum of 291 updates per second. Depth 1__}9-0-0-0‘ 10.255.255.255
t In practice, of course, the number of 8-bit prefixes is limited to { }

just 256, and it is extremely unlikely that they will all change at
the same time.

for each updated prefix, regardless of the number of holeslassification can be represented by a 2-bit field in each
One simple way to do this is to include a five bit length fieldentry.
in every table entry indicating the length of the prefix to Care must be taken when a single entryBi24corre-
which the entry belongs. spond to the start or end of multiple routes, as shown in Fig-
Consider again our example of a routing table containure 10. With our 2-bit encoding, we cannot adequately
ing the prefixes 10.45/16 and 10/8. The entries in the “holedescribe all the routes that begin and end at memory location
created by the 10.45/16 route contain 16 in the length fieldA'. The problem is readily fixed by shifting the opening and
the other entries associated with the 10/8 route contain tfedosing markers to the start (end) of the first (last) entry in
value 8. Hence, the processor only needs to send a singtemory that the route affects. The same update algorithm
message for each route update. The message would be sitan then be used without change.
lar to: “Change entries starting at numbefor a Y-bit long Note that unlike the Row- and Subrange-update
route to next-ho.” The hardware then examin@g4-Y schemes, this scheme requires a read-modify-write operation
entries beginning with entr}. For each entry whose length for each scanned entry. This can be reduced to a parallel read
field is less than or equal ¥ the new next-hop is entered. and write if the marker field is stored in a separate memory.
Those entries with length field greater thahnare left
unchanged. As a result, “holes” are skipped within theé5 .3 Simulation Results

updated range.) _
One problem is that a five bit length field needs to ba O evaluate the different update schemes, we simulated the

added to all 16 million entries in the table: an additionaP&havior of each when presented with the sequence of rout-

10 MB (about 30%) of memory. ing updates collected from the_ ISP bacl_<bo_ne _router. We
) o) evaluate the update schemes using two criteria: (i) The num-

Update Mechanism 4:Optimized One-Instruction- ber of messages per second sent by the processor, and (ii)

Update The number of memory accesses per second required to be

fix entry in TBL24 First note that for any two distinct pre- gpown in Table 3.

fixes, either one is completely contained in the other, or the

two prefixes have no entries in common. This structure is

very similar to that of parenthetical expressions where thel # of Msgs from # of Memory
scope of an expression is delimited by balanced opening ang Update Processor per Accesses per
closing parentheses: for example, the characters “{" and “y’| Scheme second (Avg/ second (Avg/
used to delimit expressions in the ‘C’ programming lan- Max) Max)
guage.

Figure 9 shows an example with three “nested” route Row 43.4/17545 43.4/17545
prefixes. Suppose that we scan an expression having ba'Subrange 1.14/303 43.4/17545
anced parentheses from a point with a nesting d&pBy
keeping track of the number of opening and closing paren{ One- 1.04/291 115.3/40415
theses seen so far, we can determine the current depth. Thisnstruction
can then be applied to performing route updates: the centr

processor provides the hardware with firgt memory entry lTable 2: Simulation results for three update mechanisms

to be updated. The hardware scans the memory sequentially,

upd%tln(? OQE{ thos;]e entries art] de[tjthTBL24 be classi The results corroborate our intuition that the row-update
nder this scneme, each entry'l can be classt- geheme puts a large burden on the processor: up to 17,545

fied as one of the following types: an opening paremhes*'?‘lessages per second. At the other extreme, the one-instruc-

(start of route), a closing parenthesis (ending of route), nffon—update scheme is optimal in terms of the number of

parenthes!s (r_niddle of route), or both an op_ening and ClOSi'_Wnessages required to be sent by the processor, with a maxi-
parenthesis (if the route contains only a single entry). Thlﬁ1um of just 291. But unless we use a separate marker mem-

ory, it requires more than twice as many memory accesses as

Figure 10. Moving the parentheses markers. the other schemes. However, this still represents less than
0.2% of the routing lookup capacity available from the
Depth = 4 scheme. In this simulation, we find that the subrange-update
{ } scheme performs well by both measures. The small number
Depth =3 of messages from the processor can be attributed to the fact
Depth = 2 { } { } that the routing table contained few holes. We expect this to

Depth=1 { }

} Tt For the one-instruction-update (optimized scheme) we assume
that the extra 2-bits to store the opening/closing marker fields
mentioned above aretstored in a separate memory.

>—>

be the case for most routing tables in the near term. But it [9] V. Srinivasan and G. Varghese. “Efficient Best Matching
too early to tell whether routing tables will become more Prefix Using Tries.” pre-publication manuscript, January

fragmented, and contain more holes in the future. 1997.
_ [10] C. Labovitz, G. R. Malan, F. Jahanian. “Internet Rout-
6 Conclusions ing Instability.” Proc. ACM SIGCOMM 1997pp. 115-

126, Cannes, France.
11] C.Partridge et al. “"A Fifty Gigabit Per Second IP
Router,” Accepted for publication iIiEEE/ACM Trans.
on Networking

The continued decreasing cost of DRAM means that it i
now feasible to perform an IPv4 routing lookup in dedicate
hardware in the time that it takes to execute a single memory
access. Today, this corresponds to approxima@by 10°
lookups per second; enough to process the packets on a
20Gb/s line. The lookup rate will improve in the future as
memory speeds increase. The scheme operates by expanding
the prefixes and throwing lots of cheap memory at the prob-
lem. Yet still the total memory cost today is less than $100,
and will (presumably) continue to decrease by roughly 50%
each year. For those applications where low cost is para-
mount, we have mentioned several multilevel variations on
the basic scheme that use memory more efficiently.

Using a trace of routing table updates from a major
backbone router, we find that care must be taken when
designing the hardware update mechanism. We have found
and evaluated two update mechanisms (Subrange-update and
One-instruction-update) that perform efficiently and quickly
in hardware with little burden on the central routing proces-
sor. Our results indicate that with either scheme, updates
steal less than 0.2% of the lookup capacity.

7 Acknowledgments

We would like to thank Quaizar Vohra and Mark Ross for

useful comments on a draft of this paper. We also thank
Sprint and Cisco Systems for providing the trace of routing
updates used in Section 5.

References

[1] Y. Rekhter, T. Li. “An Architecture for IP Address Allo-
cation with CIDR.”"RFC 1518 Sept. 1993.

[2] Merit Networks, Inc. See http://www.merit.edu

[3] A. McAuley, P. Francis. “Fast Routing Table Lookup
Using CAMs.” Proc. IEEE INFOCOM 1993Vol. 3,
pp 1382-1391, San Francisco, USA.

[4] W. Doeringer, G. Karjoth, M. Nassehi. “Routing on
Longest-Matching Prefixes.IEEE/ACM Trans. Net-
working Vol. 4, No. 1. Feb. 1996.

[5] P. Newman, T. Lyon, G. Minshall. “Flow Labelled IP: A
Connectionless Approach to ATMProc. IEEE INFO-
COM 1996 pp. 1251-1260, San Francisco, USA.

[6] Y. Rekhter, B. Davie, D. Katz, E. Rosen, G. Swallow.
“Cisco Systems’ Tag Switching Architecture Overview.”
RFC 2105 February 1997.

[7] A. Brodnik, S. Carlsson, M. Degermark, S. Pink. “Small
Forwarding Tables for Fast Routing Lookup®toc.
ACM SIGCOMM 1997pp. 3-14, Cannes, France.

[8] M. Waldvogel, G. Varghese, J. Turner, B. Plattner. “Scal-
able High-Speed IP Routing Lookup®foc. ACM SIG-
COMM 1997 pp. 25-36, Cannes, France.

