1) Las matrices de $\mathcal{M}_{2\times 2}(\mathbb{R})$ se suelen escribir en la forma $A=\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$. Decir si es verdadero o falso que los siguientes subconjuntos de $\mathcal{M}_{2\times 2}(\mathbb{R})$ tienen la estructura que se afirma:

i)
$$(\{A / a_{21} = 0\}, +, \cdot)$$
 es un cuerpo.

ii)
$$(\{A/a_{12}=0\},+,\cdot)$$
 es un anillo no conmutativo.

iii)
$$(\{A/a_{11}a_{22} - a_{12}a_{21} = 1\}, \cdot)$$
 es un grupo.

iv)
$$({A/a_{11} = a_{22}, a_{12} = a_{21} = 0}, +, \cdot)$$
 es un cuerpo.

v)
$$(\{A / a_{ij} \in \mathbb{Z}, a_{11}a_{22} - a_{12}a_{21} = 1 \text{ y } a_{21} \text{ es par}\}, \cdot)$$
 es un grupo.

vi)
$$(\{A / a_{12} = a_{21}\}, +, \cdot)$$
 es un anillo.

2) Comprobar que el conjunto $\{n + m\sqrt{2} / n, m \in \mathbb{Z}\}$ es un anillo con la suma y producto habituales.

3) Comprobar que $x * y = \frac{x+y}{1+xy}$ define una operación cerrada en $C = \{-1 < x < 1\}$. ¿Es (C, *) un grupo abeliano?

4) Estudiar si en \mathbb{Z} la operación n*m=n+m+2mn es conmutativa y asociativa.

5) Comprobar que el conjunto de funciones $C = \{f : \mathbb{R} \longrightarrow \mathbb{R}\}$ no es un grupo abeliano con la composición. ¿Lo es si exigimos que las funciones sean biyectivas?

6) Comprobar que la operación n*m=nm(n+1)(m+1)/4 es cerrada en \mathbb{Z} . ¿Es conmutativa y asociativa?

7) En el conjunto $P = \{\diamondsuit, \clubsuit, \diamondsuit, \heartsuit\}$ se definen las operaciones \oplus y \otimes con las siguientes tablas:

\oplus	\Diamond		•	\Diamond	\otimes	\Diamond		•	\Diamond
\Diamond	\Diamond	*	•	\Diamond	\Diamond	\Diamond	\Diamond	\Diamond	\Diamond
.	*	\Diamond	\Diamond	\spadesuit	*	\Diamond	*	\spadesuit	\Diamond
\spadesuit	•	\Diamond	\Diamond	*	•	\Diamond	\spadesuit	\Diamond	*
\Diamond	\Diamond	\spadesuit		\Diamond	\Diamond	\Diamond	\Diamond	•	\spadesuit

Con estas operaciones, P es un cuerpo.

- i) Comprobar la propiedad asociativa para $\clubsuit \oplus \spadesuit \oplus \heartsuit$.
- ii) ¿Cuál es el inverso multiplicativo de ♠?
- iii) Resolver la ecuación $x \oplus x \oplus (\heartsuit \otimes x) = \clubsuit$.

Nota: El grupo abeliano (P, \oplus) se llama grupo de Klein o Viergruppe. En el libro de Miguel de Guzmán "Cuentos con cuentas", se dan un par de aplicaciones de este grupo a la resolución de algunos rompecabezas.

8) Demostrar que la diferencia simétrica de conjuntos es una operación conmutativa y asociativa.