ÁLGEBRA LINEAL Y GEOMETRÍA

Hoja 6. Espacio afín II. Coordenadas cartesianas y baricéntricas.

- 1. Sea $\mathfrak{R} = \{O: \vec{e_1}, \vec{e_2}\}$ un sistema de referencia cartesiano en el espacio afín $\mathbb{A}^2_{\mathbb{R}}$ respecto del cual el punto p tiene coordenadas (0, -1). Construye otro sistema de referencia en $\mathbb{A}^2_{\mathbb{R}}$ respecto del cual el punto p tenga como coordenadas (-1, 0).
- **2.** Sean P, Q y R tres puntos de $\mathbb{A}^2_{\mathbb{R}}$ tales que \vec{PQ} y \vec{PR} son linealmente independientes.
 - a) Prueba que los vectores \vec{RP} y \vec{RQ} son linealmente independientes.

Considera las referencias cartesianas $\mathcal{R} = \{P; \vec{PQ}, \vec{PR}\}\$ y $\mathcal{R}' = \{R; \vec{RP}, \vec{RQ}\}.$

- b) Escribe las coordenadas cartesianas de P, Q y R respecto a R.
- c) Escribe las coordenadas cartesianas de P, Q y R respecto a \mathcal{R}' .
- d) Halla las ecuaciones de cambio de coordenadas entre las dos referencias.
- e) Decide, de manera razonada, si existe algún punto en $\mathbb{A}^2_{\mathbb{R}}$ con las mismas coordenadas respecto a los dos sistemas de referencia.
- **3.** Determina unas ecuaciones implícitas de las variedades lineales $L_t = p_t + V$ de $\mathbb{A}^4_{\mathbb{R}}$, donde $p_t = (1, -2, 3, t)$ y $V = \mathfrak{L}\{\vec{u_1}, \vec{u_2}, \vec{u_3}\}$ con $\vec{u_1} = (1, 1, 0, 0)$, $\vec{u_2} = (0, 0, 1, 1)$ y $\vec{u_3} = (1, 2, -1, 0)$ en un sistema de referencia fijado. ¿Para qué valor de t la variedad L_t pasa por el origen?
- **4.** Halla unas ecuaciones implícitas de la variedad lineal L de $\mathbb{A}^4_{\mathbb{R}}$ generada por los puntos $p_1 = (1,0,0,1), p_2 = (0,1,0,1)$ y $p_3 = (0,0,1,1)$, cuyas coordenadas están dadas con respecto a un sistema de referencia fijado. ¿Cuál es la dimension de L?
- **5.** Halla unas ecuaciones implícitas del subespacio afín de \mathbb{A}^5 generado por los puntos $P_1 = (-1, 2, -1, 0, 4), P_2 = (0, -1, 3, 5, 1), P_3 = (4, -2, 0, 0, -3)$ y $P_4 = (3, -1, 2, 5, 2)$.
- **6.** En $\mathbb{A}^2_{\mathbb{R}}$ y con respecto de una referencia dada \mathfrak{R} , se dan los puntos A=(1,1), B=(-2,0), los vectores $\vec{u_1}=(1,2)$ y $\vec{u_2}=(-1,1)$ y la variedad lineal L de ecuaciones $x_1-x_2=1$.
 - a) Halla las coordenadas de B respecto al sistema de referencia $\Re' = \{A; \vec{u_1}, \vec{u_2}\}.$
 - b) Halla una ecuación implícita de L con respecto a \Re' .
- 7. Sea \mathfrak{R}' un sistema de referencia en el plano $\mathbb{A}^2_{\mathbb{R}}$ que se obtiene girando un ángulo α en sentido positivo los vectores de un sistema de referencia canónico \mathfrak{R} . Si C es la circunferencia cuyos puntos $(x_1,x_2)\in\mathbb{R}^2$ satisfacen $(x_1-1)^2+x_2^2=4$ en el sistema de referencia \mathfrak{R} , halla las ecuaciones de C en el sistema de referencia \mathfrak{R}' . ¿Cuáles son las coordenadas del centro de la circunferencia respecto de \mathfrak{R}' ?
- 8. En \mathbb{A}^3 se consideran las referencias cartesianas:

$$\mathcal{R} = \{O, \vec{u}_1, \vec{u}_2, \vec{u}_3\} \text{ y } \mathcal{R}' = \{O', \vec{v}_1, \vec{v}_2, \vec{v}_3\}.$$

Sean $O_{\mathcal{R}}'=(-1,6,2),\ \vec{v}_1=\vec{u}_1+3\vec{u}_2+\vec{u}_3,\ \vec{v}_2=-\vec{u}_1$ y $\vec{v}_3=2\vec{u}_1+5\vec{u}_2+7\vec{u}_3$. Si un plano π tiene ecuación 2x-y+3z=0 en \mathcal{R} , halla su ecuación respecto a \mathcal{R}' .

9. En \mathbb{A}^2 , considera los puntos P_0, P_1, P_2, Q_0, Q_1 y Q_2 , cuyas coordenadas cartesianas en el sistema de referencia cartesiano $\mathcal{R}_C = \{P_0, \vec{e}_1, \vec{e}_2\}$ son las siguientes:

$$P_0 = (0,0),$$
 $P_1 = (1,7),$ $P_2 = (1,1)$
 $Q_0 = (-1,1),$ $Q_1 = (1,4),$ $Q_2 = (3,0)$

- a) Demuestra que los puntos de $\mathcal{R}' = \{P_0, P_1, P_2\}$ son afinmente independientes. Demuestra que los puntos de $\mathcal{R}'' = \{Q_0, Q_1, Q_2\}$ son afinmente independientes.
- b) Halla las coordenadas baricéntricas de P_0, P_1 y P_2 respecto a \mathcal{R}'' y las de Q_0, Q_1 y Q_2 respecto a \mathcal{R}' .

Considera los sistemas de referencia cartesiana $\mathcal{R}'_C = \{P_0, \vec{P_0P_1}, \vec{P_0P_2}\}\ y\ \mathcal{R}''_C = \{Q_0, \vec{Q_0Q_1}, \vec{Q_0Q_2}\}\$.

- c) Calcula las coordenadas cartesianas de Q_0, Q_1 y Q_2 respecto a \mathcal{R}'_C y las de P_0, P_1 y P_2 respecto a \mathcal{R}''_C .
- d) Describe las ecuaciones generales de cambio de coordenadas cartesianas entre \mathcal{R}'_C y \mathcal{R}''_C .
- e) Describe las ecuaciones generales de cambio de coordenadas baricéntricas entre \mathcal{R}' y \mathcal{R}'' .
- **10.** Sean A = (1,1,1), B = (1,2,3), C = (2,3,1) y D = (3,1,2) cuatro puntos de \mathbb{A}^3 dados por sus coordenadas cartesianas respecto a un sistema de referencia \mathcal{R} .
 - a) Demuestra que $\mathcal{R}' = \{A, B, C, D\}$ es un sistema de referencia baricéntrico.
 - b) Calcula las coordenadas cartesianas respecto a \mathcal{R} del baricentro de A, B, C, D.
 - c) Si $\mathcal{R} = \{O, \vec{e}_1, \vec{e}_2, \vec{e}_3\}$, halla las coordenadas baricéntricas de O respecto a \mathcal{R}' .
- 11. Demuestra que en \mathbb{A}^2 los puntos medios de cualquier cuadrilátero forman un paralelogramo.
- 12. Sean O un punto y sean \vec{u} y \vec{v} dos vectores linealmente independientes. A todo escalar λ , se le asocian los puntos A y B tales que

$$\vec{OA} = \lambda \vec{u}, \quad \vec{OB} = \lambda \vec{v}.$$

Determina el baricentro de A y B en función de λ .

- 13. En el espacio afín (A, V, φ) de dimensión n, sean L_1 y L_2 dos variedades lineales. Demuestra que si la dimensión de L_1 es n-1 y la dimensión de $L_2 \ge 1$, entonces L_1 y L_2 no se pueden cruzar.
- **14.** En el espacio afín (A, V, φ) de dimensión n, sean $L_1 = a_1 + V_1$ y $L_2 = a_2 + V_2$ dos variedades lineales. Demuestra que si $V = V_1 \oplus V_2$, entonces L_1 y L_2 se cortan en un punto.