2. Proyecciones

En dimensión finita el espacio de Hilbert de referencia será \mathbb{R}^N . De hecho, cualquier espacio de Hilbert de dimensión N será isomorfo a \mathbb{R}^N .

Sea k < N, sea V un espacio vectorial de dimensión k y sea (w_1, w_2, \ldots, w_k) una base ortonormal de V i.e.

$$\forall 1 \le i, j \le k \quad (w_i, w_j) = \delta_{i,j} = \begin{cases} 1 & \text{si } i = j, \\ 0 & \text{si } i \ne j. \end{cases}$$

 $(\delta_{i,j})$ es el símbolo de Kronecker.) Podemos completar la base de V para obtener una base ortonormal de \mathbb{R}^N : $(w_1, w_2, \dots, w_k, w_{k+1}, \dots, w_N)$ de tal forma que cualquier vector $x \in \mathbb{R}^N$ se pueda escribir de forma única como

$$x = \sum_{j=1}^{k} x_j w_j + \sum_{j=k+1}^{N} x_j w_j$$

donde $x_j = (x, w_j)$ para todo $1 \le j \le N$.

Entonces la proyección de x sobre V viene dada por

$$P_V(x) = \sum_{j=1}^k x_j w_j$$

 $y P_V(x) \perp x - P_V(x),$

$$x - P_V = \sum_{j=k+1}^{N} x_j w_j.$$

Más aún, tenemos $x - P_V(x) \in V^{\perp}$.

Asimismo, si $\mathbb{K} \subset \mathbb{R}^N$ es un convexo cerrado, también podemos definir la proyección sobre \mathbb{K} como el operador que a $x \in \mathbb{R}^N$ hace corresponder el elemento de \mathbb{K} más próximo. Por ejemplo, si $\mathbb{K} = \overline{B(0,1)}$ entonces la proyección sobre \mathbb{K} es:

$$P_{\mathbb{K}}(x) = \frac{x}{\max(\|x\|, 1)}.$$

En dimensión infinita también se puede definir la proyección sobre un convexo cerrado de un espacio de Hilbert como el elemento que minimiza

Teorema 2.1. Sea H un espacio de Hilbert y sea $K \subset H$ un subconjunto convexo y cerrado de H. Entonces, para todo $x \in H$ existe un único elemento, llamado proyección de x sobre K y notado $P_K(x) \in K$, tal que

(1)
$$||x - P_K(x)|| = \inf_{z \in K} ||x - z||.$$

Además, $P_K(x)$ se carateriza por ser el único elemento de K que es solución de la inecuación variacional:

$$(2) (x - P_K(x), y - P_K(x)) \le 0, \quad para \ todo \ y \in K.$$

Finalmente, la proyección es una contracción (no estricta):

(3)
$$||P_K(x) - P_K(y)|| \le ||x - y|| \quad \forall x, y \in H.$$

Demostración Llamemos d a:

$$d = \inf_{z \in K} \|x - z\|$$

entonces podemos hallar una sucesión $\{(z_n)_{n\in\mathbb{N}}\}\subset K$ tal que $||x-z_n||\to d$ cuando $n\to\infty$, en concreto, que para cada $n\in\mathbb{N}$, z_n verifique:

(4)
$$d^2 \le ||x - z_n||^2 \le d^2 + \frac{1}{n}.$$

A continuación aplicamos la desigualdad del paralelogramo: $||a+b||^2 + ||a-b||^2 = 2 ||a||^2 + 2 ||b||^2$ con $a = x - z_n$ y $b = x - z_k$:

$$||2x - (z_n + z_k)||^2 + ||z_k - z_n||^2 = 2||x - z_n||^2 + 2||x - z_k||^2.$$

los términos a la derecha de la anterior igualdad están acotados por:

$$2 \|x - z_n\|^2 \le 2 d^2 + \frac{2}{n}$$

У

$$2\|x - z_k\|^2 \le 2d^2 + \frac{2}{k}$$

Además,

$$||2x - (z_n + z_k)||^2 = 4 \left||x - \frac{z_n + z_k}{2}\right||^2 \ge 4 d^2$$

dado que por la convexidad de K, $\frac{z_n + z_k}{2} \in K$.

luego

$$||z_k - z_n||^2 \le 2d^2 + \frac{2}{n} + 2d^2 + \frac{2}{k} - 4d^2 = 2\left(\frac{1}{n} + \frac{1}{k}\right)$$

por lo que se deduce que $\{(z_n)_{n\in\mathbb{N}}\}$ es una sucesión de Cauchy. Como H es un espacio de Hilbert (luego es completo) $z_n\to z\in H$ cuando $n\to\infty$ y dado que K es un subconjunto cerrado, se tiene que $z\in K$. Dejando n tender a ∞ en (4) se obtiene

$$d = ||x - z||.$$

Comprobemos que z es el único elemento de K que satisface la anterior igualdad. En efecto, supongamos que la igualdad se cumpla para otro elemento $y \in K$, entonces, aplicando de nuevo la igualdad del paralelogramo, con a = x - z y b = x - y, tendríamos:

$$||2x - (z+y)||^2 + ||y - z||^2 = 2||x - z||^2 + 2||x - y||^2 = 4d^2.$$

además,

$$||2x - (z+y)||^2 = 4 ||x - \frac{z+y}{2}||^2 \ge 4d^2$$

dado que $(z+y)/2 \in K$ por la convexidad de K. Luego

$$||y - z||^2 \le 4 d^2 - 4 d^2 = 0 \implies y = z,$$

con lo que (1) queda demostrado. Notamos $P_K(x)$ al único elemento de K que verifica (1).

Para demostrar (2) consideramos cualquier $y \in K$ y cualquier $t \in (0,1)$. Por la convexidad de este subconjunto el elemento $ty + (1-t)P_K(x) \in K$ luego, de (1) se deduce que

(5)
$$||x - P_K(x)||^2 \le ||x - ty - (1 - t)P_K(x)||^2, \forall t \in (0, 1), \forall y \in K.$$

El término a la derecha de la anterior desigualdad se puede escribir como

$$||x - P_K(x) - t(y - P_K(x))||^2$$

= $||x - P_K(x)||^2 - 2t(x - P_K(x), y - P_K(x)) + t^2 ||y - P_K(x)||^2$.

Luego, de (5) deducimos que

$$0 \le -2t(x - P_K(x), y - P_K(x)) + t^2 \|y - P_K(x)\|^2$$

y dividiendo por t (t > 0) se tiene

$$0 \le -2(x - P_K(x), y - P_K(x)) + t \|y - P_K(x)\|^2$$

por lo tanto

$$(x - P_K(x), y - P_K(x)) \le \frac{t}{2} ||y - P_K(x)||^2$$

y dejando tender t a 0 tenemos que $P_K(x)$ verifica la desigualdad variacional (2).

Veamos que no hay otro $z \in K$ que verifique la inecuación variacional. Si $z \in K$ verifica la inecuación, entonces tenemos

$$(x-z,y-z) \leq 0 \quad \text{para todo } y \in K, \\ (x-P_K(x),y-P_K(x)) \leq 0 \quad \text{para todo } y \in K.$$

sustituyendo y por $P_K(x)$ en la primera inecuación y por z en la segunda se tiene

$$(x - z, P_K(x) - z) \le 0$$

 $(x - P_K(x), z - P_K(x)) \le 0$

y sumando ambas se obtiene:

$$(P_K(x) - z, P_K(x) - z) \le 0,$$

luego $||z - P_K(x)|| = 0$ es decir $z = P_K(x)$ lo que termina con la demostración de (2).

Para demostrar que P_K es una contracción consideremos dos elementos x e y de H y sus respectivas proyecciones so bre K, $P_K(x)$ y $P_K(y)$, entonces se tiene

para todo
$$z \in K$$
 se tiene
$$\begin{cases} (x-z, P_K(x)-z) \leq 0 \\ (y-z, P_K(y)-z) \leq 0 \end{cases}$$

Escribiendo la primera inecuación para $z = P_K(y)$ y la segunda para $z = P_K(x)$ se tiene

$$\begin{cases} (x - P_K(y), P_K(x) - P_K(y)) \le 0\\ (y - P_K(x), P_K(y) - P_K(x)) \le 0 \end{cases}$$

y sumando

$$(x - y + P_K(x) - P_K(y), P_K(x) - P_K(y)) < 0$$

luego

$$||P_K(x) - P_K(y)||^2 \le (y - x, P_K(x) - P_K(y)) \le ||y - x|| \, ||P_K(x) - P_K(y)||$$

У

$$||P_K(x) - P_K(y)|| \le ||y - x|| \quad \forall x, y \in H.$$
 Q.E.D.

Corolario 2.2. Sea H un espacio de Hilbert y sea $V \subset H$ un subespacio vectorial cerrado de H. Entonces, para todo $x \in H$ existe un único elemento, llamado proyección de x sobre V y notado $P_V(x) \in V$, tal que

(6)
$$||x - P_V(x)|| = \inf_{z \in V} ||x - z||.$$

Además, $P_V(x)$ se carateriza por ser el único elemento de V que es solución de la ecuación variacional:

(7)
$$(x - P_V(x), z) = 0, \quad para \ todo \ z \in V,$$

y

$$||x||^2 = ||P_V(x)||^2 + ||x - P_V(x)||^2$$

Finalmente, la proyección es una contracción (no estricta):

(8)
$$||P_V(x) - P_V(y)|| \le ||x - y||.$$

Demostración Todo subespacio vectorial es convexo luego V es un convexo cerrado por lo que (6) (respectivamente (8)) es consecuencia directa de (1) (respectivamente (3)).

Si se tiene en cuenta que para todo $z \in H$, $z + P_V(x) \in H$, aplicando (2) con $y = z + P_V(x)$ se tiene

$$(x - P_V(x), z) \ge 0$$
, para todo $z \in V$,

al ser V un subespacio, si $z \in V$ entonces $-z \in V$ luego deducimos (7). De (7) se deduce que

$$x - P_V(x) \in V^{\perp},$$

en particular $x - P_V(x) \perp P_V(x)$ luego

$$||x||^2 = ||x - P_V(x) + P_V(x)||^2 = ||x - P_V(x)||^2 + ||P_V(x)||^2.$$

Q.E.D.

Nota 1. Obviamente tendremos $x = P_V(x)$ si y sólo si $x \in V$. Por otra parte, de (7) se deduce que $x - P_V(x) \in V^{\perp}$. Diremos que H es suma directa de V y V^{\perp} :

$$H = V \oplus V^{\perp}$$

i.e. todo $x \in H$ se escribe, de manera única, como suma de un elemento de V, (su proyección) y de un elemento de V^{\perp} .