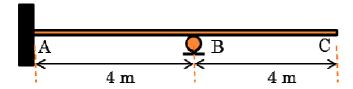




Asignatura: "IME111 – MF5129"-"Cálculo de Estructuras – Teoría Estructuras"


Cuatrimestre: 1º Examen: Final Convocatoria: Extraordinaria

Grupo: 5INT / 4ME-4AUT Curso: 2013/2014 Fecha: 2-jul-2014

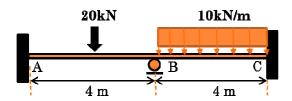
#### PARTE TEÓRICO-PRÁCTICA

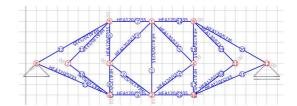
### (2.5 Puntos) Tiempo recomendado 30'.

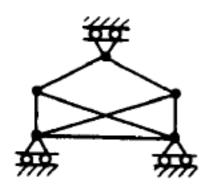
1. Sea la viga real de la figura. Dibuje la geometría de su viga conjugada:

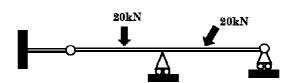


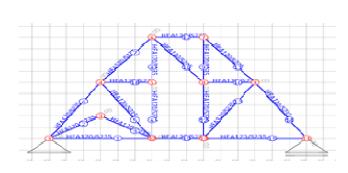
2. ¿Qué métodos conoce para el cálculo de deformaciones en vigas?

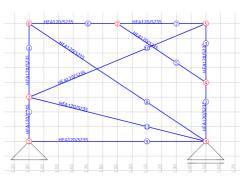

- 3. ¿Es posible resolver pórticos compuestos al mismo tiempo de barras biarticuladas, barras biempotradas y con incrementos de temperatura en algunas de ellas por el método matricial? En cualquier caso, explique por qué.
- 4. ¿De qué forma es posible calcular estructuras que se han montado con barras más cortas que la longitud en la que tienen que ir montadas?

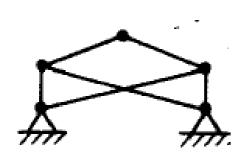


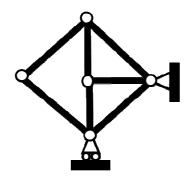


|    | ALUMNO:                                                                                                                                                                                                                                                                                                                                                                                     |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5. | Comente la siguiente afirmación: "En estructuras hiperestáticas de grado dos, a resolver por el método de la flexibilidad, es necesario identificar dos incógnitas hiperestáticas. Para ello se podrán elegir dos incógnitas cualesquiera que hagan que el cálculo teórico de barras y nodos (sin tener en cuenta las incógnitas elegidas) dé un valor igual a cero, es decir, isostático". |
| 6. | Comente la siguiente afirmación: "En celosías isostáticas que tengan barras con incremento de temperatura, siempre será posible calcular los esfuerzos de las barras despreciando los efectos térmicos, cualesquiera que sean."                                                                                                                                                             |
| 7. | ¿Es posible aplicar el método de los tres momentos a una viga de un solo vano, con un extremo empotrado y el otro libre (viga empotrada simple)? ¿Por qué?                                                                                                                                                                                                                                  |
| 8. | ¿Cuál es el número máximo de barras que puede calcular el método matricial en una estructura? ¿Por qué?                                                                                                                                                                                                                                                                                     |





9. Estudie el grado de estabilidad global de las siguientes celosías y vigas:





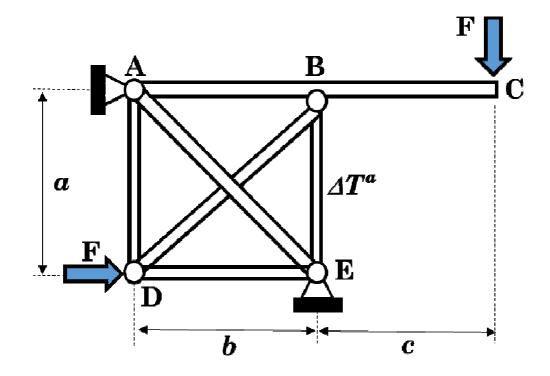












# PARTE PRÁCTICA EJERCICIO 1

## (3.5 puntos) Tiempo recomendado 75'.

Dada la estructura de la figura sometida a dos fuerzas F=10Tn en los nudos C y D, con una barra BE que sufre un incremento de temperatura  $\Delta T$ =100°C, y sabiendo que todas las barras tienen las mismas propiedades (E, A y I), se pide:

- 1º) Hallar el grado de hiperestaticidad de la estructura y elegir con criterio (explicando por qué) la(s) incógnita(s) hiperestática(s). (0.5 puntos)
- 2º) Esfuerzos N, V y M en todas las barras. (2 puntos)
- 3º) Desplazamiento horizontal del nudo D. (0.5 puntos)
- 4º) Desplazamiento vertical del nudo C. (0.5 puntos)

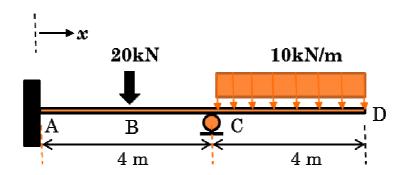
Datos: a=b=c=200 cm,  $E=2,1\cdot10^6$  kg/cm<sup>2</sup>, A=100 cm<sup>2</sup>, I=10000 cm<sup>4</sup>,  $\alpha=2.1\cdot10^{-6}$  °C -1





# PARTE PRÁCTICA

#### **EJERCICIO 2**


#### (2 Puntos) Tiempo recomendado 40'

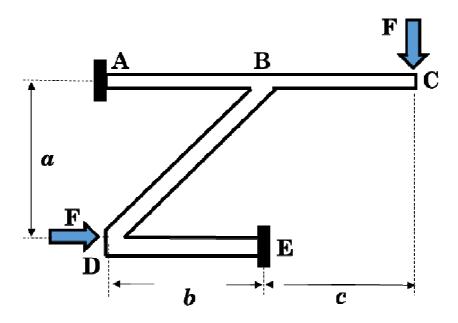
Sea la viga de la figura empotrada en el extremo izquierdo A y sobre la que actúa una fuerza en el punto B (justo en la mitad del vano AC) y una carga distribuida en el voladizo CD. Considerar E·l=cte.

Se pide:

- 1º) Hallar las reacciones en A y C.
- 2º) Deflexión del punto B.
- Nota 1: Dejar las soluciones en función de E·I.

Nota 2: El alumno puede utilizar el método que prefiera para la resolución del problema, pero se recomienda utilizar el Método de los Tres Momentos.






# **PARTE PRÁCTICA**

#### **EJERCICIO 3**

## (2 Puntos) Tiempo recomendado 35'.

El pórtico de la figura está sometido a dos fuerzas F. Se desea resolver la estructura por el método matricial.



| Viga | Área [cm²] | Inercia [cm <sup>4</sup> ] | Datos | Valor               | Unidades           |
|------|------------|----------------------------|-------|---------------------|--------------------|
| AB   | 100        | 10000                      | a     | 300                 | cm                 |
|      |            |                            | b     | 200                 | cm                 |
| ВС   | 100        | 10000                      | С     | 200                 | cm                 |
| BD   | 50         | 500                        | F     | 6000                | kg                 |
| DE   | 50         | 500                        | Е     | 2,1·10 <sup>6</sup> | kg/cm <sup>2</sup> |

#### Se pide:

- 1º) Matriz de rigidez GLOBAL de la estructura (0.75 puntos).
- 2º) Calcular los desplazamientos y giros de los nudos B, C y D (0.75 puntos).
- 3º) Calcular las reacciones en los empotramientos A y E (0.5 puntos)

Nota: Para ahorrar tiempo, en las matrices, basta con representar la parte triangular superior.