INSTRUCCIONES PARA EL EXAMEN

- Dispone Vd. de 2 horas para realizar el ejercicio.
- El único material permitido es una calculadora no programable.
- En las preguntas ha de criticar cada una de las opciones propuestas.
- Puede usar todo el papel que precise, pero el ejercicio deberá cumplimentarse en el presente formulario.

No se corregirá nada que se incluya en hojas aparte.

Pregunta 1. (1,3 puntos)

Si se adoptan como <u>únicas hipótesis de partida</u> la definición de entalpía y la existencia de la relación funcional U(T,P) = U[T,V(T,P)], se puede concluir que:

a)
$$\left(\frac{\partial U}{\partial V}\right)_T = -\frac{\kappa(C_P - C_V)}{\alpha} + \kappa PV$$
 b) $\left(\frac{\partial U}{\partial V}\right)_T = \frac{C_P - C_V}{V\alpha} - P$

b)
$$\left(\frac{\partial U}{\partial V}\right)_T = \frac{C_P - C_V}{V\alpha} - F$$

c)
$$\left(\frac{\partial U}{\partial V}\right)_T = C_P - PV\alpha$$

d)
$$\left(\frac{\partial U}{\partial V}\right)_T = \frac{C_P}{V\alpha} - P$$

Pregunta 2. (0,8 puntos)

Un mol de gas ideal se encuentra a 25° C, siendo su presión de 0,001 mm de mercurio. De acuerdo con tales datos, el valor de la magnitud $G(T, P) - G^{\circ}(T)$ es:

- a) -33,55 kJ
- b) 33,55 kJ
- c) 8,314 kJ
- d) -127,1 kJ

Pregunta 3. (0,8 puntos)

El valor de la función ΔG_{m} , cuando se mezclan 0,2 moles de helio y 0,3 moles de oxígeno a 27 °C para formar una mezcla ideal, vale:

- a) 8,39 kJ
- b) cero c) -8,39 kJ d) -839 J

Pregunta 4. (1,3 puntos)

Un alambre puede considerarse como un sistema termodinámico que sigue la ecuación de estado $J = T\Phi(L)$ donde J es la tensión mecánica y $\Phi(L)$ una función de la longitud que sólo puede tomar valores positivos. Teniendo en cuenta que en este caso el trabajo se expresa como dW = J dL y que la función de Helmholtz admite diferencial exacta, al estirar un alambre de manera reversible e isoterma el incremento de entropía ha de ser:

- a) Positivo.
- b) Cero.
- c) Negativo. d) Depende de T.

Pregunta 5. (0,5 puntos)

Un sistema binario consta de n moles. Si se considera la propiedad extensiva Y, y se recuerda la definición de propiedad molar parcial, indíquese qué proposiciones son correctas

a)
$$\frac{\partial Y}{\partial x_2} = \frac{n}{x_1} \overline{Y}_2$$

b)
$$\frac{\partial Y}{\partial x_2} = \overline{Y}_2$$

a)
$$\frac{\partial Y}{\partial x_2} = \frac{n}{x_1} \overline{Y}_2$$
 b) $\frac{\partial Y}{\partial x_2} = \overline{Y}_2$ c) $\frac{\partial Y}{\partial x_2} = -\frac{n}{x_2} \overline{Y}_1$ d) $\frac{\partial Y}{\partial x_2} = \frac{n}{x_2} \overline{Y}_1$

d)
$$\frac{\partial Y}{\partial x_2} = \frac{n}{x_2} \overline{Y}_1$$

Ejercicio 1. (2,5 puntos)

Dedúzcase la expresión de la energía interna de un gas que sigue la ecuación de estado

$$\frac{PV}{RT} = 1 + B_2(T)\frac{1}{V} + B_3(T)\frac{1}{V^2} + \cdots$$

Ejercicio 2. (2,8 puntos)

Para el equilibrio grafito \rightleftharpoons diamante se dispone de la información siguiente:

En el caso de que tanto $\Delta \overline{H}^{\circ}$ como $\Delta \overline{S}^{\circ}$ se supongan constantes y que los sólidos son incompresibles, se pide calcular la presión a la que están en equilibrio el grafito y el diamante a 25 °C.