TECNOLOGÍA ELÉCTRICA

$Tipo\ A$	Curso 2012/2013.

Nombre: DNI:

Hojas a entregar: Hoja de lectura óptica y hoja de examen identificada y rellena

Nota: Únicamente está permitido el uso de calculadora.

TIEMPO: 2 HORAS

Esta Prueba Presencial consta de diez ejercicios. Lea atentamente el enunciado de cada uno de ellos antes de resolverlos. Cada ejercicio tiene una validez de 1 punto. Utilice papel de borrador para resolver los ejercicios que lo requieran. De entre las posibles respuestas propuestas en el ejercicio debe seleccionar la que más se aproxime al resultado que usted haya obtenido y marcarla en la hoja de lectura óptica. No se dará como correcto ningún resultado diferente a los reflejados. El desarrollo de cada problema y los resultados intermedios relevantes deben reflejarse en el espacio marcado detrás de los correspondientes ejercicios del presente examen, que debe identificarse y entregarse conjuntamente con la hoja de lectura óptica. Los ejercicios cuyo desarrollo se solicita y que no lo tengan, o no sea correcto, no se darán como válidos para la nota final.

Ejercicio 1. Enumere los diferentes tipos de centrales solares térmicas que existen y describa los tipos de colector utilizados, en donde se consiguen temperaturas de vapor de hasta:

Solución: a) 100 °C

b) 300 °C

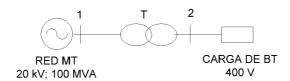
c) 500 °C

d) 600 °C

Desarrollo:

Ejercicio2. Describa cómo se calculan cada uno de los términos de la matriz de admitancias. Cada fila de dicha matriz, representa:

- a) La impedancia de cada una de las líneas de la red mallada.
- b) La corriente entrante en el nudo correspondiente a dicha fila cuando se multiplican sus términos por la tensión de los otros nudos conectados a él.
- c) La tensión del nudo correspondiente a dicha fila cuando se multiplican sus términos por la tensión de los otros nudos conectados a él.
- d) La potencia entrante en el nudo correspondiente a dicha fila cuando se multiplican sus términos por la tensión de los otros nudos conectados a él.


Desarrollo:

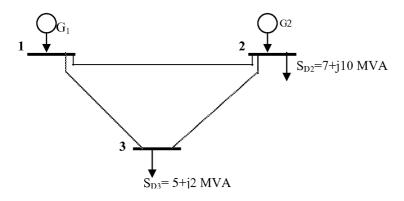
Ejercicio 3. Describa brevemente como se determinan las pérdidas de potencia en el estator de un motor asíncrono, e indique y justifique porqué las pérdidas por histéresis y corrientes de Focault son:

- a) Nulas cuando el motor está parado.
- b) Menores con el motor parado que con el motor en funcionamiento.
- c) Iguales con el motor parado que con el motor en funcionamiento.
- d) Mayores con el motor parado que con el motor en funcionamiento.

Desarrollo:

Ejercicio 4. En el circuito de la figura, el transformador trifásico T está conectado a una línea de impedancia 1+j5 Ω y está compuesto por tres transformadores monofásicos de 20/0,4 kV; 30 MVA y u_{CC} = 6% (R_t = 0), conectados en triángulo del lado de media tensión y en estrella del lado de baja tensión. Se desea determinar la impedancia de cortocircuito por fase a la salida del transformador trifásico en valores p.u., utilizando como bases de tensiones del sistema U_{1B} = 20 kV y U_{2B} = 0,4 kV y como potencia base S_B = 100 MVA.

Solución: a) 0,25+j 1,06 p.u. b) 1+j 4,06 p.u. c) 0,25+j 1,066 p.u. d) 0,25+j 1,18 p.u


Desarrollo:

Ejercicio 5. En el sistema de la figura se obtienen los siguientes valores de tensión en los nudos después de resolver el flujo de potencias:

$$U_1 = 1 \angle 0^{\circ}$$
 $U_2 = 1,04 \angle -1^{\circ}$ $U_3 = 0,98 \angle -0,5^{\circ}$

La línea de interconexión entre los nudos generadores tiene una impedancia en serie, en valores por unidad, de $Z_{1-2}=0,4+j0,3$ p.u. y la admitancia en paralelo es $y_{12,0}=j0,2$ p.u. Las líneas que conectan los nudos generadores con el de carga tienen una impedancia en serie de $Z_{i-3}=0+j0,2$ p.u. y admitancia en paralelo despreciable.

Tomando como base de potencia 1000 MVA y base de tensiones 50 kV, determinar las pérdidas de potencia activa del sistema, en valores reales.

Solución: a) 20,3 MW

b) 10,3 MVA

c) 9,2 MW

d) 4,2 MW

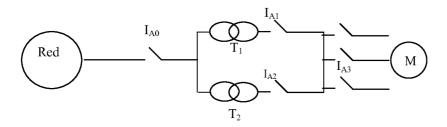
Desarrollo:

Nombre: DNI:

Ejercicio 6. En una red aérea de baja tensión con esquema de distribución IT, se desea calcular la máxima corriente de defecto a tierra en caso de un primer defecto de aislamiento en un punto de la red situado a 100 km aguas abajo del transformador de distribución que la alimenta.

El transformador es de 15/0,4 kV, 160 kVA y $u_{\rm CC}$ = 6% (R_t despreciable), con neutro aislado de tierra. La línea tiene conductores de aluminio de sección 650 mm² de resistencia despreciable a los efectos del cálculo. Su disposición es tal que la inductancia y la capacidad de la línea, por fase, son 1,176 mH/km y 98,8 nF/km, respectivamente.

Solución: a) 1,6 A


b) 1,4 A

c) 0,13 A

d) 0,014 A

Desarrollo:

Ejercicio 7. La red trifásica de la figura es de 20 kV y S_{CC} =100 MVA (con resistencia despreciable y factor c de tensión de red igual a 1) y alimenta un centro de transformación con dos transformadores en paralelo de 20/0,4 kV, 0,5 MVA y u_{cc} =4% (R_t =0) . Uno de los circuitos de baja tensión alimenta a su vez, un motor de 130 kW a 400 V con factor de potencia 0,8 inductivo y reactancia subtransitoria X $^{\prime\prime}_{M}$ = j0,05 Ω.

Determinar el poder de corte del interruptor automático IA₁ de la figura.

Solución: a) $IA_1 = 5 kA$

b) $IA_1 = 10 kA$

c) $IA_1 = 15 kA$

d) IA₁=25 kA

Desarrollo:

Ejercicio 8. Un centro de transformación conectado a una red de media tensión de 20 kV, cuya corriente de defecto máxima es 100 A, según los datos de la compañía suministradora, está situado en un terreno de ρ = 100 Ω.m. La tierra del centro se realiza mediante un anillo rectangular de 4 mx3 m de conductor de cobre de 50 mm² enterrado a 0,5 m de profundidad al que se añaden 4 picas de 2 metros.

Suponiendo que la tensión de contacto límite viene dada por la mitad de la tensión transferida a la tierra del centro, determinar el tiempo máximo en el que tienen que actuar las protecciones de la línea de media tensión para cumplir con la condición de máxima tensión de contacto, tomando K=72 y n=1.

Solución: a) 0,02 s

b) 0,12 s

c) 0,18 s

d) 1,2 s

Desarrollo:

Ejercicio 9. Una red de media tensión de 20 kV y S_{CC} = 250 MVA (con R_r/X_r =0,1 y factor de tensión de red c = 1) alimenta un centro de transformación con un transformador de 20/0,4 kV, 160 kVA y u_{cc} =4% y su aparamenta y conductores correspondientes. Si de los datos de la red de media tensión se sabe que sus protecciones actúan antes de 0,6 segundos en la peor condición, determinar la sección mínima (por criterio térmico en condiciones de cortocircuito) de un conductor de aluminio aislado

con caucho butílico instalado enterrado que alimenta la celda de protección de media tensión de dicho centro.

Solución: a) 35 mm²

b) 50 mm²

c) 70 mm²

d) 95 mm²

Desarrollo:

Ejercicio 10. Un circuito de baja tensión de una red TT industrial está protegido con un diferencial y parte de una red de media tensión de impedancia despreciable y un transformador de 15/0,4 kV, 160 kVA y u_{cc} =4% (R_t despreciable), con neutro puesto a tierra de resistencia 50 Ω e independiente de la del centro de transformación. Para cumplir con los requisitos de protección contra contactos indirectos, determinar la corriente de defecto máxima a la que debe actuar el diferencial si la tierra de utilización tiene una resistencia de 100 Ω

Solución: a) 30 mA

b) 100 mA

c) 300 mA

d) 500 mA

Desarrollo:

Electrodo	Resistencia de Tierra en Ω						
Placa enterrada vertical o profunda	R = 0,8 ρ/P						
Placa enterrada horizontal o superficial	R= 1,6 ρ/P						
Pica vertical	R = ρ/L						
Conductor enterrado horizontalmente	R = 2 ρ/L						
Malla de tierra	R= ρ/4r +ρ/L						
ρ, resistividad del terreno (Ω.m)							
P , perímetro de la placa (m)							
L, longitud de la pica o del conductor (m)							

r, radio del círculo de superficie igual a la cubierta por la malla (m)

	i termo de cables unipolares (1)					ì cable tripolar o tetrapolar				2 cables unipolares			1 cable bipolar					
Secoión riominal mos²	é	•	(é	•		•			(0)) ()			(•	
TIPO DE AISLAMIENTO																		
	Ŋ	В	В	R	P	V	В	Ð	R	.P	ν	В	a	R	V	В	D	R
10 16	41 85	47 63	48 65	56 67	62 80	39 51	44 59	47 63	48 64	39 55	55 74	62 82	66 90	66 90	51 66	58 74	62 80	62 80
25 35	75 90	86 105	96 130	93 115	101 125	68 82	78 94	100	86 105	70 86	97 121	113 136	121 148	121 148	90 109	101 125	108 133	108
50	115	130	135	140	152	100	115	125	130	109	144	164	176	178	129	148	156	156
70 95	145 186	165 210	175 215	180 220	195 238	130 160	150 185	155 195	165 205	146 172	179 222	207 253	218 269	227 273	190	187 230	199 242	199 243
120 150 185	215 245 285	245 280 330	255 290 345	266 300 350	273 320 363	185 215 245	215 245 285	225 260 306	235 375 313	195 230 261	257 292 335	296 335 382	312 355 410	316 363 417	230 265 304	269 304 351	281 320 371	281 324 378
240 300	390	380 445	400 465	420 480	413 472	290 335	340 385	360 408	370 425	296 343	394 452	452 573	480 554	491 569	339 417	413 480	437 507	441 515
400 500	455 520	\$15 595	545 625	560 645	527 581	385	450	475	505	390	519 593	600 675	636 714	655 743	484	3,58	593	601
630	600	680	715	740	632	uui.	ica				686	792	842	858		المثن		
800 1000	yaya www.	 			683 722									1,4,00 1,400			 	***

Tipos de aislamiente

- V × Policiorum de vinite.

 8 × Coma butilira (butil).

 D × Editero propileno.

 8 × Policitieno reticulado.

 F × Papel impregnado.
- (1) Incluye, además, el conductor neutro, si existe.

conductores de protección que constituyen un cable muiticonductor

equipality on a Charles distributed by an opping it suit options.									
	Naturaleza del aisiamiento								
	PVC	PAVEPR	Caucho butilo						
Temperatura inicial	70°C	90°C*	85°C						
Temperatura final	160°C	250°C	220%						
Material del conductor		*							
Cobre	115	143	134						
Aluminio	78	94	88						