1.

Pruébese que la familia B de intervalos cerrados de R de la forma

$$[a, b]$$
, donde $a \in Q$, $b \in R - Q$, y $a < b$,

es una base para alguna topología en el conjunto R de los números reales. Justifique su respuesta.

2.

Consideremos en el conjunto R de los números reales las topologías T_{CF} (topología de los complementos finitos), y T_{CN} (topología de los complementos numerables).

Estudie la compacidad de cada uno de los espacios (R, T_{CF}) y (R, T_{CN}) .

Nota:
$$T_{CF} = \{ R, \varnothing \} \cup \{ A \subset R \mid R - A \text{ es finito } \},$$

$$T_{CN} = \{ R, \varnothing \} \cup \{ B \subset R \mid R - B \text{ es numerable } \}.$$

Justifique su respuesta.

3.

Sea $X=\{x\in Z\mid x\geq 2\}$ y sea T la topología cuya base está formada por los conjuntos $U(n)=\{z\in X\mid z\text{ es un divisor de }n\}$, para todo $n\in X$.

(a) Pruebe que para todo punto $p \in X$, la adherencia del conjunto unipuntual $\{p\}$ está dada por

$$\overline{\{p\}} = \{ y \in X \mid y \text{ es un múltiplo de } p \}.$$

(b) Estudie si el espacio topológico (X, T) es conexo.

Justifique su respuesta.

Cada pregunta se puntuará sobre 10 y después se calculará la nota media.