

Sumario

- Introducción
- > Diseño de amplificadores operacionales
 - ✓ Repaso de conceptos básicos
 - ✓ Amplificadores de transconductancia (OTA) CMOS
 - ✓ OTA CMOS Miller
 - ✓ Asimetría, CMRR y PSSR
- > Diseño de circuitos con capacidades conmutadas
 - ✓ Conceptos básicos
 - ✓ Análisis
 - ✓ Diseño de filtros con capacidades conmutadas
- > Estructuras analógicas programables

Introducción

- Revolución tecnológica en los últimos 30 años causada por las demandas del mercado y las propias necesidades tecnológicas.
- > Competencia entre implementaciones analógicas y digitales:
 - ✓ enorme desarrollo de microprocesadores y DPSs
 - ✓ necesidad de interfaces analógicas con el mundo real
- > Existe una tendencia creciente hacia la integración de circuitos mixtos: entornos digitales y analógicos en el mismo chip.
- > Los avances en las técnicas VLSI analógicas y digitales han cambiado la forma de particionamiento de los sistemas.

Diseño de Circuitos y Sistemas Electrónicos - Ingeniería de Telecomunicación

Introducción

- > En los 60 y 70, la mayor parte del diseño analógico se realizaba en tecnologías bipolares o híbridas.
- En esa época, el uso del amplificador operacional se popularizó, para pasar a ser un componente básico más en los años siguientes.
- ➤ En los 80 se desarrolló enormemente la tecnología MOS, especialmente CMOS, con el auge de los sistemas digitales.
- ➤ En los 90 se desarrolló la tecnología BiCMOS que, aunque más costosa, permite usar transistores de ambos tipos en un mismo chip.

Introducción

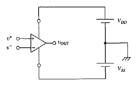
- Las aplicaciones comerciales promueven el uso de plataformas mixtas:
 - ✓ comunicaciones, dispositivos multimedia, etc.
 - ✓ portabilidad: alimentación por baterías, bajo consumo
- > Los circuitos mixtos analógico-digitales permiten en un solo chip:
 - ✓ incluir sistemas completos (paradigma SoC: System-on-Chip)
 - ✓ utilizar las características de bajo consumo y gran integración de la tecnología CMOS digital para crear sistemas de gran complejidad
 - ✓ el uso de BiCMOS permite incluir en un único chip interfaces analógicas, lógica digital bipolar de gran velocidad y lógica digital CMOS de bajo consumo y gran volumen

Diseño de Circuitos y Sistemas Electrónicos - Ingeniería de Telecomunicación

Diseño de amplificadores operacionales

- > El amplificador operacional es uno de los bloques más versátiles y usados en aplicaciones lineales:
 - √ bajo coste y elevadas prestaciones
 - ✓ multitud de opciones, encapsulados, etc.
- > El amplificador operacional es un amplificador diferencial con:
 - ✓ ganancia en tensión elevadísima
 - ✓ impedancia de entrada muy alta
 - ✓ impedancia de salida muy baja
- La realimentación permite obtener precisión en la ganancia y control del ancho de banda:
 - ✓ es una necesidad en aplicaciones lineales

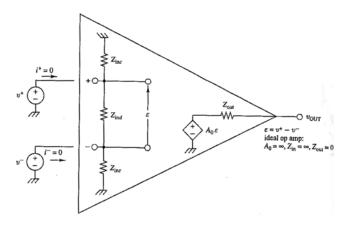
Diseño de amplificadores operacionales


- El desarrollo de amplificadores operacionales CMOS, junto a las virtudes de la lógica CMOS, hacen de ésta una candidata ideal para circuitos mixtos.
- La necesidad de crear filtros integrados activos muy por encima de la banda de audio ha suscitado el interés en los amplificadores de transconductancia (OTA: Operational Transconductance Amplifier):
 - ✓ el OTA básico consiste en una fuente de corriente controlada por tensión con una determinada ganancia de transconductancia
- > El núcleo del OTA es el amplificador diferencial, pero permite mantener el comportamiento ideal a frecuencias muy elevadas.

Diseño de Circuitos y Sistemas Electrónicos - Ingeniería de Telecomunicación

Amp. operacional: conceptos básicos

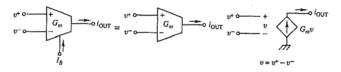
> Modelo básico del amplificador operacional:



- $\checkmark v_{OUT} = A_0(v^+ v^-)$
- ✓ opera como una fuente de tensión controlada por tensión
- ✓ impedancia de entrada infinita
- √ impedancia de salida nula
- ✓ v⁺: entrada no inversora
- √ v⁻: entrada inversora
- > Respuesta diferencial, componentes comunes canceladas.

Amp. operacional: conceptos básicos

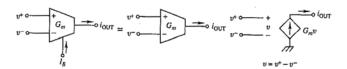
> Modelo básico del amplificador operacional:



Diseño de Circuitos y Sistemas Electrónicos – Ingeniería de Telecomunicación

Amplificador de transconductancia

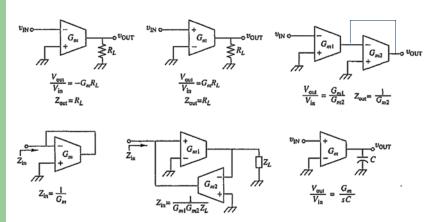
- El amplificador de transconductancia (OTA: Operational Transconductance Amplifier) traduce entradas de tensión a salidas en corriente:
 - \checkmark $i_{\text{OUT}}=G_m(v^+-v^-)$
 - $\checkmark G_{m}$ (ganancia de transconductancia) suele poder ajustarse con una corriente de polarización I_{B}
 - ✓ mucho más simples que los amplificadores operacionales estándar
 - ✓ pueden mantener un comportamiento ideal a altas frecuencias



Amplificador de transconductancia

Modelo ideal:

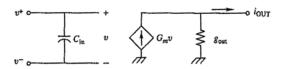
- √ impedancias de entrada y salida infinitas
- \checkmark normalmente dependencia lineal entre G_m e I_B : $G_m(I_B) = \eta I_B$
- ✓ dependencia lineal en inversión débil (MOS) o baja corriente (bipolar)
- \checkmark $I_{\it B}$ puede eliminarse del símbolo ideal, aunque esto no implica que desaparezca del circuito real
- \checkmark I_B suele ser constante en aplicaciones lineales, pero una señal más general es muy útil para aplicaciones no lineales



Diseño de Circuitos y Sistemas Electrónicos – Ingeniería de Telecomunicación

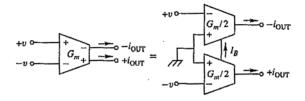
ugr

Amplificador de transconductancia


> Modelo ideal:

Amplificador de transconductancia

- > Limitaciones por comportamiento no ideal:
 - \checkmark no linealidad de G_m
 - \checkmark variabilidad de G_m con el proceso de fabricación y la temperatura
 - ✓ elementos parásitos que limitan el rango de frecuencias
- > Modelo de OTA no ideal:



Diseño de Circuitos y Sistemas Electrónicos - Ingeniería de Telecomunicación

Amplificador de transconductancia


- Dado que los circuitos de entrada del amplificador operacional y el OTA son muy similares, ruido, offsets DC y PSRR son muy parecidos para ambos bloques.
- > El rango dinámico del OTA puede extenderse con configuraciones balanceadas:

OTA CMOS Básico

- > El OTA CMOS básico corresponde a la estructura siguiente:
 - ✓ Etapa diferencial nMOS con carga activa
 - ✓ T1 y T2 tienen la misma relación de aspecto $(W/L)_1$
 - \checkmark T3 y T4 tienen la misma relación de aspecto $(W/L)_4$
 - \checkmark Nivel de corriente dado por $I_{\scriptscriptstyle R}$
 - Sustratos conectados a las fuentes para evitar efecto body

Diseño de Circuitos y Sistemas Electrónicos – Ingeniería de Telecomunicación

OTA CMOS Básico

> A bajas frecuencias, la transconductancia del OTA es:

$$G_{m} = g_{m1} = g_{m2} = \sqrt{2K_{n}^{'}I_{B}\left(\frac{W}{L}\right)_{1}}$$

donde K'_n es el parámetro de transconductancia de un nMOS.

> Asumiendo r_{o2} = r_{o4} , la resistencia de salida y la ganancia en tensión se pueden escribir como:

$$R_{\text{OUT}} = \frac{r_{o2}}{2} = \frac{V_{En}L_1}{I_B} \qquad A_{\text{v}} = G_{m}R_{\text{OUT}} = V_{En}\sqrt{\frac{2K_{n}^{'}W_{1}L_{1}}{I_B}} = \frac{V_{En}L_{1}}{V_{GS1} - V_{T}}$$

donde V_{En} es la tensión Early.

OTA CMOS Básico

> La resistencia entre el nodo 4 y tierra es:

$$R_{n4} = \frac{1}{g_{m3}} \left\| r_{o1} \approx \frac{1}{g_{m3}} = \frac{1}{\sqrt{2K_p^{'} I_B \left(\frac{W}{L}\right)_4}}$$

Sólo los nodos 4 y 5 causan polos, pero el polo en el nodo 5 es el dominante por su mayor resistencia (incluso sin tener en cuenta C_I):

$$f_d = \frac{1}{2\pi R_{\text{OUT}} \left(C_{n5} + C_L \right)} \qquad C_{n5} = C_{GD4} + C_{DB4} + C_{GD2} + C_{DB2}$$

$$GBW = A_{v} f_{d} = \frac{g_{m1}}{2\pi \left(C_{n5} + C_{L}\right)}$$

Diseño de Circuitos y Sistemas Electrónicos – Ingeniería de Telecomunicación

OTA CMOS Básico

- > La expresión general de GBW:
 - \checkmark está determinada por la $g_{\it m}$ de los transistores de entrada y la capacidad dominante
 - $\checkmark\,$ con un único nodo de alta resistencia, C_L es la capacidad dominante
 - $\checkmark\,$ con dos nodos de alta resistencia, la capacidad Miller los conecta
- > Para una C_L dada, GBW viene determinada por g_{m1} , que puede controlarse eligiendo:
 - \checkmark relación de aspecto e I_B
 - $\checkmark \ V_{GS} V_T \ e \ I_B$

√ la elección depende del diseño

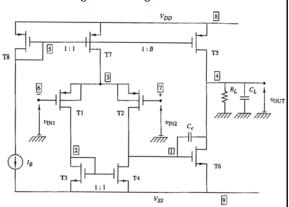
$$g_{m1} = \sqrt{2K_n'}I_B\left(\frac{W}{L}\right)_1$$

OTA CMOS Básico

> El polo no dominante se sitúa en:

$$f_{nd} = \frac{1}{2\pi R_{n4}C_{n4}} \qquad \qquad C_{n4} = C_{GD1} + C_{DB1} + C_{DB3} + C_{GS3} + \\ + C_{GS4} + C_{GD4} + C_{GB3} + C_{GB4}$$

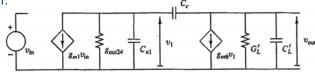
- sólo actúa sobre la mitad de la señal (nodo 4), con lo que su efecto es el mismo de un polo a esta frecuencia y un cero al doble de la misma
- \checkmark con esto, el margen de fase es: $PM = \pi/2 \arctan \frac{GBW}{f_{nd}} + \arctan \frac{GBW}{2f_{nd}}$
- ightharpoonup Como regla, se toma como mínimo para $f_{\it nd}$ la propia GBW; si coinciden:


$$\frac{g_{m3}}{C_{n4}} = \frac{g_{m1}}{C_{n5} + C_L} \qquad \xrightarrow{K'_n \approx 2K'_p} \qquad \left(\frac{W}{L}\right)_4 \approx 2\left(\frac{W}{L}\right)_1 \left(\frac{C_{n4}}{C_{n5} + C_L}\right)^2$$

Diseño de Circuitos y Sistemas Electrónicos – Ingeniería de Telecomunicación

OTA CMOS Miller

- > El OTA Miller corresponde a la configuración siguiente:
- ✓ etapa diferencial pMOS con carga activa
- ✓ T5 y T6 forman un inversor CMOS, con capacidad de compensación C_c
- ✓ esta capacidad actúa como la de Miller
- ✓ la configuración puede invertirse (nMOS por pMOS y viceversa)


- > Algunas consideraciones de diseño:
 - ✓ no existe diferencia en el análisis de la configuración anterior o la invertida
 - √ las fuentes de los transistores de entrada han de conectarse al sustrato, por lo que la configuración anterior es la adecuada para CMOS de pozo n
 - ✓ la configuración invertida es adecuada para CMOS de pozo p
 - \checkmark T7 y T8 tienen el mismo tamaño, con lo que $I_{\it B}$ fluye en la etapa diferencial
 - √ T5 es mucho más grande, con lo que la corriente en la etapa de salida es mucho mayor

Diseño de Circuitos y Sistemas Electrónicos – Ingeniería de Telecomunicación

OTA CMOS Miller

Para el cálculo de la ganancia utilizamos el modelo de pequeña señal:
c.

 $g_{o24} = g_{o2} + g_{o4}$

$$G'_{L} = G_{L} + g_{o5} + g_{o6}$$

$$C'_L = C_L + C_{n4}$$

- > La primera etapa es un OTA y su ganancia es: $A_{v10} = \frac{g_{m1}}{g_{v24}}$
- > La ganancia de la segunda etapa es: $A_{v20} = \frac{g_{m6}}{G'_L}$

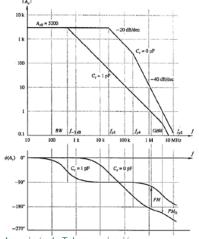
$$A_{\nu} = A_{\nu 10} A_{\nu 20} = \frac{g_{m1}}{g_{o24}} \frac{g_{m6}}{G'_{L}}$$

- ightharpoonup Para la respuesta a alta frecuencia se puede omitir C_c en un primer análisis:
 - ✓ los nodos de entrada se suponen controlados por fuentes de baja resistencia
 - ✓ el nodo común 3 puede omitirse para la ganancia diferencial
 - ✓ los nodos 1, 2 y 4 determinan un sistema de tres polos, siendo la impedancia del nodo 1 la mas elevada y haciendo de éste el polo dominante:

$$f_{p1} = \frac{g_{o24}}{2\pi C_{o1}} \qquad C_{n1} = C_{GD2} + C_{DB2} + C_{GD4} + C_{DB4} + C_{GS6}$$

> Aunque este polo es de relativa baja frecuencia (kHz), está muy por encima del polo dominante de los operacionales típicos.

Diseño de Circuitos y Sistemas Electrónicos – Ingeniería de Telecomunicación

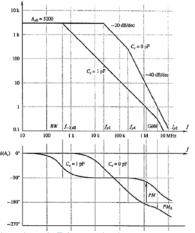

OTA CMOS Miller

> Los polos no dominantes corresponden a:

$$f_{p4} = \frac{G'_{L}}{2\pi (C_{L} + C_{n4})} \qquad C_{n4} = C_{GD5} + C_{DB5} + C_{DB6}$$

$$f_{p2} = \frac{g_{m3}}{2\pi C_{n2}} \qquad C_{n2} = C_{GS3} + C_{DB3} + C_{GS4} + C_{GD4} + C_{GD4} + C_{DB1}$$

- ✓ la respuesta resultante produce un margen de fase muy pequeño, incluso negativo
- \checkmark es necesario añadir C_c para corregir este efecto


ightharpoonup Incluyendo C_c tenemos un polo dominante y otro no dominante:

$$f_d \approx \frac{g_{o24}}{2\pi A_{v20} C_c}$$

$$f_{nd\,4} = \frac{g_{m6}}{2\pi C'_L} \frac{1 + \varepsilon_{GBW}}{1 + \frac{C_{n1}}{C_c} + \frac{C_{n1}}{C'_L}} \approx \frac{g_{m6}}{2\pi C'_L}$$

donde:

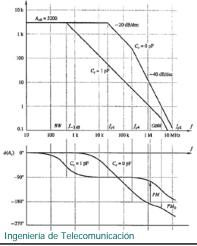
$$\mathcal{E}_{GBW} = \frac{G'_{L}}{g_{m6}} \left(1 + \frac{C_{n1}}{C_{c}} \right) + \frac{g_{o24}}{g_{m6}} \left(1 + \frac{C'_{L}}{C_{c}} \right)$$

Diseño de Circuitos y Sistemas Electrónicos – Ingeniería de Telecomunicación

wugr ____

OTA CMOS Miller

- ightharpoonup Incluyendo C_c tenemos un polo dominante y otro no dominante:
 - ✓ el ancho de banda es:


$$BW \approx f_d = f_{-3dB}$$

✓ el producto ganancia ancho de banda es:

$$GBW = \frac{g_{m1}}{2\pi C_c} \frac{1}{1 + \varepsilon_{GBW}} \approx \frac{g_{m1}}{2\pi C_c}$$

✓ el margen de fase es:

 $PM = \frac{\pi}{2} - \arctan \frac{GBW}{f_{nd}}$

- > Para el análisis anterior ha de tenerse en cuenta que:
 - \checkmark existe también un cero en $f_z = \frac{g_{m6}}{2\pi C_c}$ que puede ignorarse
 - \checkmark existe una pareja cero-polo en el nodo 2 (similar al análisis sin C_c) que puede también ignorarse
- \triangleright El efecto de C_c puede resumirse en:
 - ✓ respuesta estable, incluso con ganancia unidad en realimentación
 - ✓ permite mayor flexibilidad en el diseño al contar con un parámetro más
 - ✓ este parámetro extra puede emplearse en reducción de área, PSRR, etc.

Diseño de Circuitos y Sistemas Electrónicos – Ingeniería de Telecomunicación

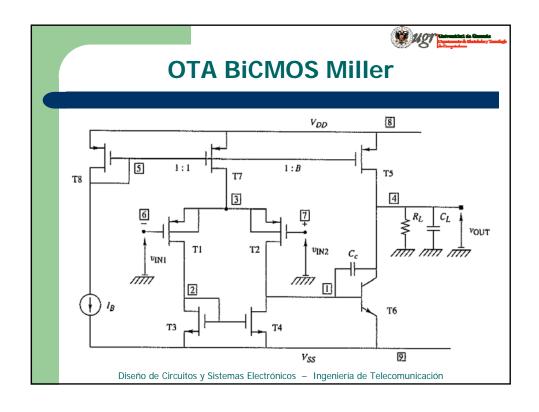
OTA CMOS Miller

- > La tensión de entrada en modo común es: $v_{ICM} = \frac{v_{IN1} + v_{IN2}}{2}$
 - ✓ limitada a tensiones que mantengan los transistores en saturación
 - ✓ el límite superior se alcanza cuando T7 entra en la región lineal:

$$v_{\rm ICM\; max} = V_{\rm DD} - V_{\rm DSsat7} - V_{\rm GS1}$$

✓ en el límite inferior, los transistores de entrada han de permanecer en saturación:

$$v_{ICM\,\mathrm{min}} = V_{SS} + V_{GS3} + V_{DSsat1} - V_{GS1}$$


- ✓ el rango resultante no es simétrico, principalmente por T7
- > Si no se usa alimentación simétrica (V_{DD} = $|V_{SS}|$) puede desplazarse el rango para incluir V_{SS} (normalmente 0), a costa de v_{ICMmax} .

- > La tensión de salida está limitada por:
 - ✓ uno de los dos transistores de salida salga de saturación, o
 - ✓ la corriente sea insuficiente para la carga
 - ✓ los límites resultantes son:

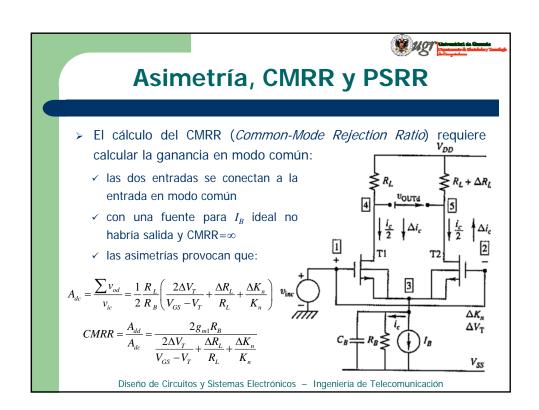
$$V_{OUT\,\mathrm{max}} = \min\left[V_{DD} - V_{DSsat5}, \; R_L \cdot I_{DS5}\right] \qquad \qquad V_{OUT\,\mathrm{min}} = V_{SS} + V_{DSsat6}$$

- > Los niveles máximos de corriente vienen determinados por:
 - ✓ la máxima corriente que puede proporcionar T5
 - ✓ la máxima corriente que puede absorber T6, que es mucho más elevada que la anterior

- > Reemplazar T6 por un BJT resulta en:
 - mayor separación de polos, dada la mayor transconductancia del transistor bipolar
 - \checkmark como consecuencia, para los mismos niveles de corriente se requiere un valor menor de $C_{c'}$ aumentando GBW
 - ✓ no tiene sentido sustituir los transistores de entrada, ya que proporcionan una impedancia de entrada elevada
- > Como efectos negativos:
 - \checkmark la resistencia en el nodo 1 decrece $(r_{\pi 6})$, disminuyendo la ganancia de la primera etapa y la ganancia total
 - √ se hace difícil igualar las tensiones en los nodos 1 y 2, provocando offsets

- > T6 es reemplazado por una configuración Darlington:
 - ✓ su impedancia de entrada es mucho mayor, manteniendo la alta ganancia del OTA
 - ✓ también se incluye un espejo de corriente de tres transistores, igualando las tensiones en los nodos 1 y 2
- > Como efectos negativos:
 - ✓ se incluyen dos nuevos nodos en el circuitos, con otros dos polos no dominantes, disminuyendo el margen de fase
 - \checkmark la capacidad colector-sustrato de T4 incremente la capacidad en el nodo 1, aumentado el valor requerido para C_c

Diseño de Circuitos y Sistemas Electrónicos – Ingeniería de Telecomunicación



Asimetría, CMRR y PSRR

- > La simetría y repetibilidad entre componentes (resistencias, capacidades, transistores) de un circuito integrado es uno de los factores más importantes en el diseño de sistemas analógicos:
 - ✓ hasta ahora hemos supuesto componentes completamente idénticos
 - √ fotolitografía, grabado, etc., provocan que componentes idénticos sean ligeramente diferentes en sus parámetros característicos
 - ✓ este efecto se ve atenuado al aumentar el tamaño de los componentes
- Estas diferencias no influyen en las especificaciones principales, por lo que han de definirse otros parámetros como offsets o CMRR para cuantificar los efectos de estas asimetrías.

- Los principales parámetros de un transistor MOS que pueden verse afectados son:
 - \checkmark ΔV_T : las diferencias se deben a distintos grosores del óxido y dopados del sustrato, típicamente entre 10 y 25mV
 - \checkmark ΔK : diferencias causadas por distintos grosores del óxido y diferencias en movilidad, puede alcanzar hasta un 10%
 - \checkmark $\Delta \gamma$. las diferencias se deben a distintos grosores del óxido y dopados del sustrato, puede alcanzar hasta un 5%
 - √ también puede encontrarse diferencias en las resistencias
- ➤ Estas diferencias se dan entre componentes adyacentes en la misma zona de un chip (variaciones **locales**) y entre diferentes chips, diferentes obleas y diferentes tiradas (**globales**).

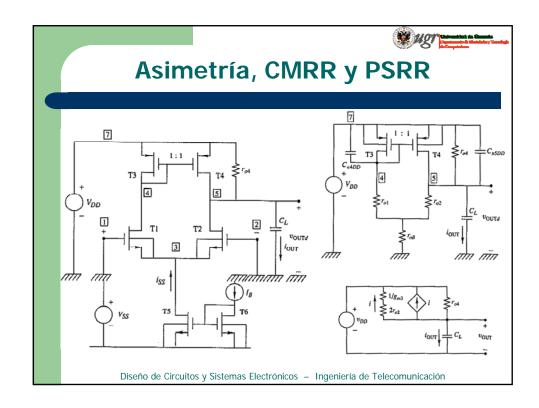
- Algunas simples precauciones en el diseño pueden ayudar a reducir offsets aleatorios y CMRR:
 - √ sólo han de acoplarse dispositivos del mismo tipo
 - dispositivos acoplados han de operar a la misma temperatura (es necesario tener en cuenta el mapa de temperatura que pueden crear dispositivos de potencia)
 - ✓ aumentar el tamaño de los dispositivos acoplados
 - ✓ ubicar dispositivos acoplados a la mínima distancia posible (especialmente transistores y capacidades)
 - ✓ ubicar dispositivos acoplados con la misma orientación sobre el cristal
 - ✓ los dispositivos acoplados han de tener la misma relación áreaperímetro

Diseño de Circuitos y Sistemas Electrónicos - Ingeniería de Telecomunicación

Asimetría, CMRR y PSRR

- > Algunas simples precauciones en el diseño pueden ayudar a reducir *offsets* aleatorios y CMRR:
 - \checkmark el número de giros y esquinas han de coincidir en dispositivos acoplados
 - trazar dispositivos acoplados de forma simétrica en todas direcciones, con disposición céntrica
 - ✓ añadir dispositivos extra en los extremos de las series
 - ✓ es preferible emplear dispositivos bipolares en lugar de MOS para elementos acoplados (sólo aplicable en tecnologías BiCMOS)
 - ✓ diodos o fusibles en paralelo con secciones de resistencias pueden ayudar a corregir su valor tras la fabricación

- > En circuitos integrados en los que se mezclan funciones digitales y analógicas, ambos tipos puede interaccionar.
- > Uno de los efectos más comunes es que el reloj (o relojes) de las funciones digitales y de capacidades conmutadas, así como *buffers*/ *drivers* de salida, generen picos de corriente en:
 - ✓ líneas de alimentación
 - ✓ líneas de tierra
 - ✓ sustrato del circuito integrado
- La inmunidad de las funciones analógicas a estas fluctuaciones se mide a través del PSSR (*Power-Supply Rejection Ratio*).


Diseño de Circuitos y Sistemas Electrónicos - Ingeniería de Telecomunicación

Asimetría, CMRR y PSRR

- Si se reduce el consumo de los bloques analógicos, los niveles de impedancia en sus terminales aumenta, haciéndolo también la sensibilidad a señales espurias:
 - ✓ al disminuir el PSRR, este efecto se ve incrementado
- Se pueden conseguir valores elevados de PSRR a bajas frecuencias, pero donde es más crítico es a altas frecuencias, donde se sitúan las fluctuaciones en la alimentación.
- ➤ El considerar la alimentación como una entrada AC más complica grandemente el cálculo de PSRR:

$$PSRR_{DD} = \frac{A_{v}}{A_{DD}} = \frac{v_{OUT} / v_{IN}}{v_{OUT} / v_{DD}} = \frac{v_{DD}}{v_{IN}}$$

$$PSRR_{SS} = \frac{A_{v}}{A_{SS}} = \frac{v_{OUT} / v_{IN}}{v_{OUT} / v_{SS}} = \frac{v_{SS}}{v_{IN}}$$

- > En los circuitos de la figura anterior:
 - √ T1 y T2 se sustituyen por sus resistencias de salida, al igual que la fuente de corriente
 - √ T4 se sustituye por una fuente ideal de corriente dependiente de corriente
 - ✓ T3 se sustituye por $1/g_{m3}$
 - \checkmark se supone que $R_B >> r_{o24}$ y $g_{m3} >> g_{o24}/2$
 - ✓ por tanto, para frecuencias por debajo de BW:

$$A_{DD} = \frac{v_{OUT}}{v_{DD}} = \frac{1}{1 + j\frac{f}{BW}}$$
 $PSRR_{DD} = \frac{A_{v}}{A_{DD}} = A_{v0}$

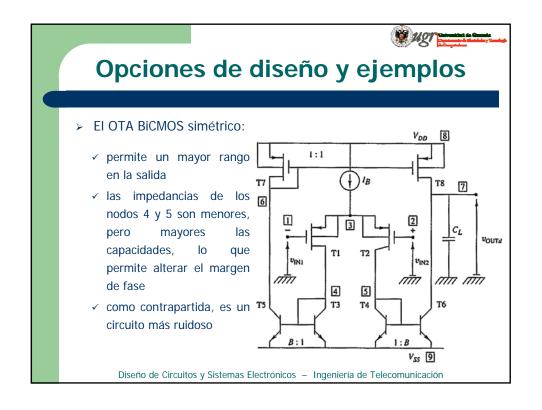
- > Para el análisis a frecuencias superiores:
 - \checkmark la magnitud de salida es la corriente a través de C_L
 - ✓ para frecuencias superiores a BW, esta corriente siempre es muy superior a la que fluye por $g_{\sigma 24}$, con lo que:

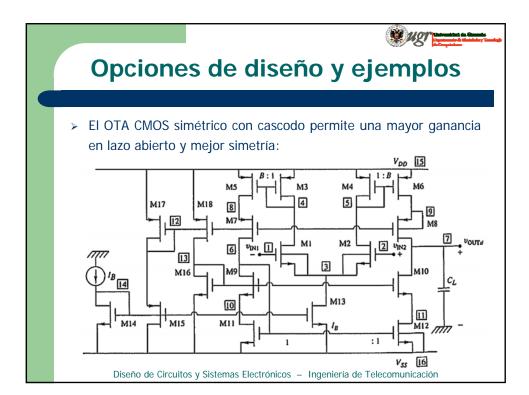
$$\frac{i_{OUT}}{v_{DD}} = g_{o24} \frac{j \frac{f}{BW}}{1 + j \frac{f}{RW}} = g_{o24} \frac{C_L s}{g_{o24} + C_L s} \qquad PSRR_{DDij} = \frac{i_{OUT} / v_{IN}}{i_{OUT} / v_{DD}} = \frac{g_{m1}}{g_{o24}}$$

✓ si se tienen en cuenta las capacidades de acoplo:

$$PSRR_{DDif} = \frac{i_{OUT} / v_{IN}}{i_{OUT} / v_{DD}} = \frac{g_{m1}}{g_{o24}} \frac{1}{1 + \frac{\left(C_{n4DD} + C_{n5DD}\right)s}{g_{o24}}}$$

Diseño de Circuitos y Sistemas Electrónicos - Ingeniería de Telecomunicación




Asimetría, CMRR y PSRR

- \triangleright Para el cálculo de PSRR_{SS}, la influencia de V_{SS} sobre la salida se debe a dos factores:
 - ✓ la corriente i_{SS} a la salida del espejo de corriente como resultado de las fluctuaciones de V_{SS} (v_{SS})
 - \checkmark la corriente de salida i_{OUT} causada por i_{SS}
- Si la etapa diferencial es perfectamente simétrica, i_{SS} no produce efecto alguno en la salida (PSRR_{SS} infinito), con lo que el posible efecto se debe a las asimetrías del circuito y PSRR_{SS} será usualmente más elevado que PSRR_{DD}:

$$PSRR_{SSif} = \frac{i_{OUT} / v_{IN}}{i_{OUT} / v_{DD}} = \frac{g_{m1}}{g_{o5} + C_{n3SS} s} \frac{1}{\frac{\Delta g_{m1}}{2g_{m1}} + \frac{\Delta g_{mb1}}{2g_{mb1}}}$$

Sumario

- > Introducción
- > Diseño de amplificadores operacionales
 - ✓ Repaso de conceptos básicos
 - ✓ Amplificadores de transconductancia (OTA) CMOS
 - ✓ OTA CMOS Miller
 - ✓ Asimetría, CMRR y PSSR
- > Diseño de circuitos con capacidades conmutadas
 - ✓ Conceptos básicos
 - ✓ Análisis
 - ✓ Diseño de filtros con capacidades conmutadas
- > Estructuras analógicas programables

Capacidades conmutadas

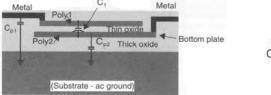
- Los circuitos de capacidades conmutadas (SC: Switched-Capacitors) son una de las alternativas más populares para el procesamiento de señales en CMOS y BiCMOS:
 - ✓ operan como un procesador de señales en tiempo discreto, pero sin necesitar convertidores A/D y D/A
 - ✓ como consecuencia, puede analizarse usando la transformada z y
 normalmente requieren filtro de suavizado y anti-aliasing.
- > Los bloques básicos para la creación de estos circuitos son:
 - ✓ amplificadores operacionales
 - ✓ capacidades
 - ✓ conmutadores controlados por señales de reloj que no se solapen

Diseño de Circuitos y Sistemas Electrónicos - Ingeniería de Telecomunicación

Capacidades conmutadas

- Una de las aplicaciones más populares es el diseño de filtros activos:
 - respuesta en frecuencia muy exacta, ya que los coeficientes están determinados por relaciones entre capacidades (muy precisas en circuitos integrados)
 - √ la respuesta en frecuencia es función del reloj de muestreo, que también puede fijarse de manera muy precisa
- > Además del filtrado, otras aplicaciones de los circuitos de capacidades conmutadas son:
 - ✓ etapas de ganancia
 - ✓ osciladores controlados por tensión
 - ✓ moduladores

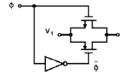
Capacidades conmutadas


- > Los amplificadores incluidos en los circuitos SC han de respetar ciertas limitaciones sobre no idealidades:
 - ✓ una ganancia DC baja afecta a la precisión de la función de transferencia discreta del circuito
 - ✓ la frecuencia de ganancia unidad, como regla general, ha de ser al menos cinco veces superior a la frecuencia de reloj
 - ✓ esto último requiere además un margen de fase de al menos 70°
 - ✓ un slew-rate insuficiente puede limitar la frecuencia de reloj
 - ✓ un offset DC no nulo puede traducirse en un offset DC muy elevado en la salida, dependiendo de la topología; este efecto puede reducirse con muestreo doble correlado

Diseño de Circuitos y Sistemas Electrónicos - Ingeniería de Telecomunicación

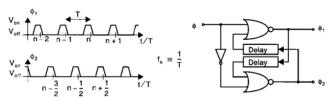
Capacidades conmutadas

- > Las capacidades que se incluyen en estos circuitos suelen construirse a partir de dos capas de polisilicio:
 - \checkmark la capacidad C_1 queda determinada por el área de intersección de ambas capas
 - ✓ existen una capacidad parásita (hasta el 20% de la capacidad construida) debida al sustrato
 - ✓ otra capacidad parásita aparece por el conexionado (hasta el 5%)



Capacidades conmutadas

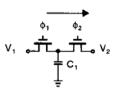
- Los conmutadores empleados en estos circuitos han de reunir ciertas características:
 - ✓ resistencia en abierto muy elevada, para reducir las fugas de carga
 - ✓ resistencia en conducción muy reducida
 - ✓ no introducir desplazamiento de tensión en conducción
 - ✓ la estructura más adecuada es la puerta de transmisión CMOS



Diseño de Circuitos y Sistemas Electrónicos - Ingeniería de Telecomunicación

Capacidades conmutadas

- > Un circuito SC necesita al menos dos señales de reloj que no se solapen:
 - ✓ determinan cuando se producen las transferencias de carga
 - √ han de no solaparse para evitar pérdidas de carga
 - √ han de tener la misma frecuencia y no estar activas simultáneamente
 - ✓ no es necesario un control exhaustivo de los flancos
 - ✓ pueden generarse a partir de un único reloj


Análisis

- Los circuitos de capacidades conmutadas basan su funcionamiento en la equivalencia entre una resistencia y un condensador en carga y descarga continua:
 - \checkmark suponiendo que ϕ_1 y ϕ_2 no se solapan, C_1 se carga a V_1 y V_2 en cada ciclo de reloj
 - en consecuencia, en cada ciclo de reloj se transfiere carga entre los dos nodos:

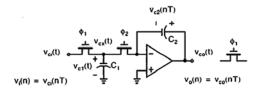
$$\Delta Q_1 = C_1 \left(V_1 - V_2 \right)$$

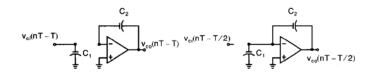
esto equivale a una corriente media que fluye entre ambos nodos:

$$I_{avg} = \frac{C_1 \left(V_1 - V_2 \right)}{T} \equiv \frac{\left(V_1 - V_2 \right)}{R_{eq}} \quad \Rightarrow \quad R_{eq} = \frac{T}{C_1} = \frac{1}{C_1 f_s}$$

Diseño de Circuitos y Sistemas Electrónicos – Ingeniería de Telecomunicación

Análisis


- Los circuitos de capacidades conmutadas basan su funcionamiento en la equivalencia entre una resistencia y un condensador en carga y descarga continua:
 - si se aumenta la frecuencia muestreo, con la misma cantidad de carga transferida en cada período, se incrementa la corriente media
 - \checkmark si se incrementa C_1 aumenta la cantidad de carga transferida, aumentando la corriente media
 - ✓ ambos aumentos de corriente equivalen a una disminución de la resistencia equivalente
 - esta aproximación es válida a frecuencias menores que la de muestreo



Análisis

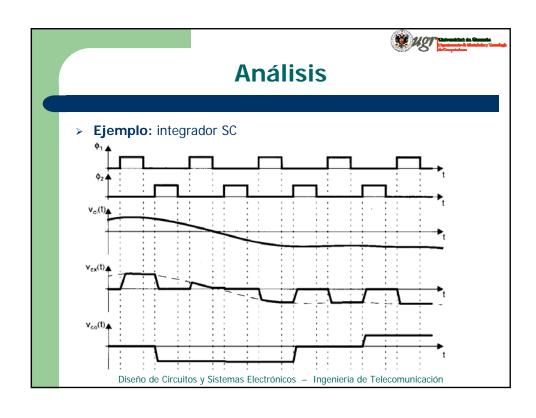
- > Ejemplo: integrador SC
 - \checkmark entrada y salida se muestrean con ϕ_1 (conmutador en la salida)

Diseño de Circuitos y Sistemas Electrónicos – Ingeniería de Telecomunicación

Análisis

- > Ejemplo: integrador SC
 - ✓ con ϕ_1 y ϕ_2 inactivas, la carga en las dos capacidades es en el instante nT-T:

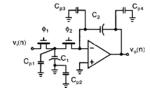
$$Q_1 = C_1 v_{ci} \left(nT - T \right) \qquad Q_2 = C_2 v_{co} \left(nT - T \right)$$


 \checkmark cuando ϕ_2 se activa, se fuerza la descarga de C_1 (V^- =0), pero la corriente resultante fluye hacia C_2 y aumenta su carga, que permanece al nuevo valor mientras ϕ_1 está activa :

$$C_2 v_{co}(nT) = C_2 v_{co}(nT - T) - C_1 v_{ci}(nT - T)$$

 \checkmark usando como variables $v_i(n)=v_{ci}(nT)$ y $v_o(n)=v_{co}(nT)$:

$$v_{o}(n) = v_{o}(n-1) - \frac{C_{1}}{C_{2}}v_{i}(n-1) \implies V_{o}(z) = z^{-1}V_{o}(z) - \frac{C_{1}}{C_{2}}z^{-1}V_{i}(z)$$


$$H(z) = \frac{V_{o}(z)}{V_{i}(z)} = -\frac{C_{1}}{C_{2}}\frac{z^{-1}}{1-z^{-1}} = -\frac{C_{1}}{C_{2}}\frac{1}{z-1}$$

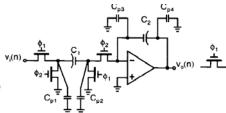
ugr

Análisis

> Uno de los inconvenientes del circuito anterior es el efecto de las capacidades parásitas:

$$H(z) = -\frac{C_1 + C_{p1}}{C_2} \frac{1}{z - 1}$$

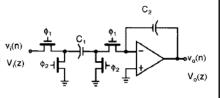
- ✓ el principal inconveniente es que estos parásitos no pueden controlarse adecuadamente e introducen no linealidades
- > Es posible reducir el efecto de los elementos parásitos mediante una topología adecuada del circuito.



Análisis

- > **Ejemplo**: integrador SC no inversor inmune a parásitos
 - ✓ con ϕ_1 activa, C_1 se carga a la tensión de entrada
 - cuando φ₂ se activa, C₁ se descarga a través del nodo de tierra, aumentando la tensión de salida (para entradas positivas)

 \checkmark con esta configuración, las capacidades parásitas permanecen descargadas o no afectan (C_{p1}) a la carga en C_1

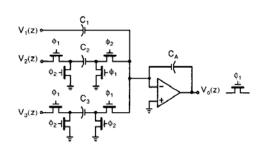

$$H(z) = \frac{V_o(z)}{V_i(z)} = \frac{C_1}{C_2} \frac{z^{-1}}{1 - z^{-1}} = \frac{C_1}{C_2} \frac{1}{z - 1}$$

Diseño de Circuitos y Sistemas Electrónicos – Ingeniería de Telecomunicación

ugr

Análisis

- > **Ejemplo:** integrador SC inversor inmune a parásitos
 - ✓ alterando el control de los conmutadores se puede conseguir una configuración inversora
 - \checkmark con esta configuración, la carga en $v_{i(2)}$ C_2 no se ve afectada cuando ϕ_2 está activa
 - la función de transferencia resultante corresponde a un integrador sin retardo



$$H(z) \equiv \frac{V_o(z)}{V_i(z)} = -\frac{C_1}{C_2} \frac{z}{z-1}$$

Análisis

- > El análisis de los circuitos SC se puede simplificar a través de gráficos de flujo de señal:
 - ✓ aplicando el principio de superposición

$$\frac{V_o(z)}{V_1(z)} = -\frac{C_1}{C_A}$$

$$\frac{V_o(z)}{V_2(z)} = \frac{C_2}{C_A} \frac{z^{-1}}{1 - z^{-1}}$$

$$\frac{V_o(z)}{V_3(z)} = -\frac{C_3}{C_A} \frac{1}{1 - z^{-1}}$$

$$V_{o}(z) = -\frac{C_{1}}{C_{A}}V_{1}(z) + \frac{C_{2}}{C_{A}}\frac{1}{1-z^{-1}}V_{2}(z) - \frac{C_{3}}{C_{A}}\frac{1}{1-z^{-1}}V_{3}(z)$$

Diseño de Circuitos y Sistemas Electrónicos – Ingeniería de Telecomunicación

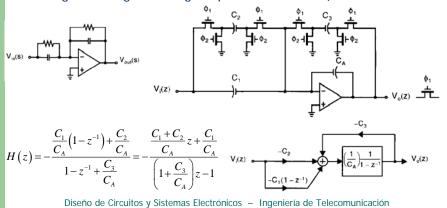
Análisis

> El análisis de los circuitos SC se puede simplificar a través de gráficos de flujo de señal:

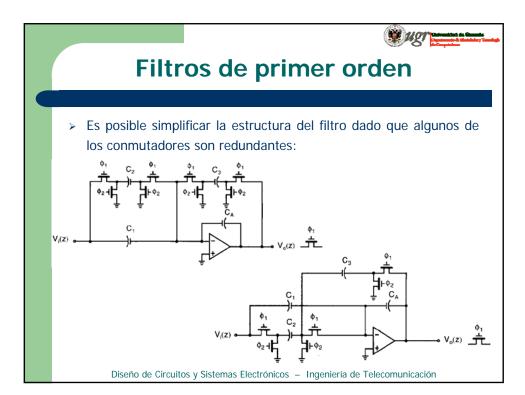
$$V_{o}(z) = -\frac{C_{1}}{C_{A}}V_{1}(z) + \frac{C_{2}}{C_{A}}\frac{z^{-1}}{1 - z^{-1}}V_{2}(z) - \frac{C_{3}}{C_{A}}\frac{1}{1 - z^{-1}}V_{3}(z)$$

- este bloque representa la etapa del amplificador operacional
- ✓ las etapas de entrada se representan por tres factores según su tipo;
 - o capacidad no conmutada
 - o capacidad conmutada con retardo
 - o capacidad conmutada sin retardo.

Filtros de primer orden


- > El hecho de que a bajas frecuencias una capacidad conmutada equivale a una resistencia puede utilizarse para sustituir las resistencia en filtros activos RC:
 - v puede conseguirse una resistencia de 2MΩ con una capacidad de 5pF conmutada a 100kHz, valor que requeriría un área muy elevada en un circuito integrado en el que no se empleasen pasos específicos de fabricación.
- A frecuencias más cercanas a la frecuencia del reloj, la descripción del sistema ha de hacerse en función de la transformada z.
- Las estructuras más típicas corresponden a filtros de primer orden y filtros biquad.

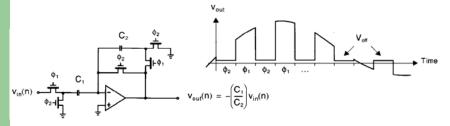
Diseño de Circuitos y Sistemas Electrónicos – Ingeniería de Telecomunicación



Filtros de primer orden

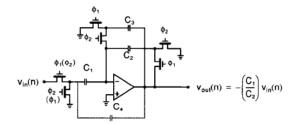
> Se puede replicar la estructura del filtro RC sustituyendo las resistencias por capacidades conmutadas sin retardo (producen integración negativa, al igual que las resistencias):

33



Otras aplicaciones

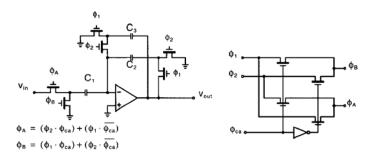
Offset y ruido se pueden reducir reseteando la capacidad de integración en cada ciclo de reloj:


- ✓ durante ϕ_2 , C_1 y C_2 se cargan a la tensión de *offset* del operacional, tensión que queda cancelada en cada ciclo
- \checkmark como contrapartida, la salida es sólo válida durante ϕ_1 , requiriendo un operacional con un muy buen <code>slew-rate</code>

Diseño de Circuitos y Sistemas Electrónicos – Ingeniería de Telecomunicación

Otras aplicaciones

Para eliminar las restricciones de slew-rate se puede usar una configuración con reset capacitivo:



- \checkmark C_4 mantiene la realimentación cuando los conmutadores no conducen
- ✓ al pasar de ϕ_1 a ϕ_2 , las cargas de C_1 y C_2 se cancelan y no afectan a C_3 , con lo que la salida se mantiene independiente del *offset*

Otras aplicaciones

> Modulador de onda cuadrada (amplitud):

- $\checkmark\,$ la polaridad de la salida se puede alterar cambiando φ_A por φ_B

Diseño de Circuitos y Sistemas Electrónicos – Ingeniería de Telecomunicación

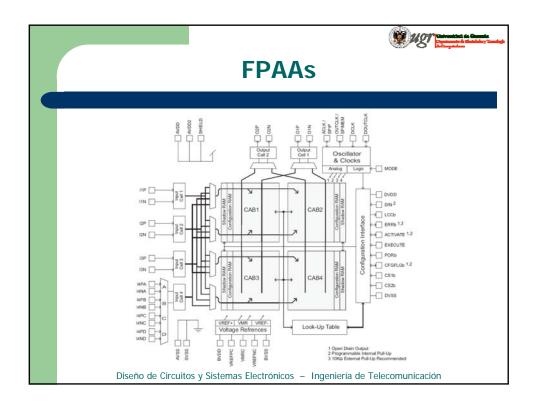
Sumario

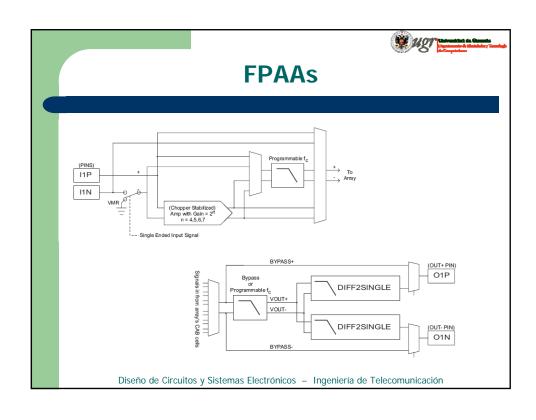
- > Introducción
- > Diseño de amplificadores operacionales
 - ✓ Repaso de conceptos básicos
 - ✓ Amplificadores de transconductancia (OTA) CMOS
 - ✓ OTA CMOS Miller
 - ✓ Asimetría, CMRR y PSSR
- > Diseño de circuitos con capacidades conmutadas
 - ✓ Conceptos básicos
 - ✓ Análisis
 - ✓ Diseño de filtros con capacidades conmutadas
- > Estructuras analógicas programables

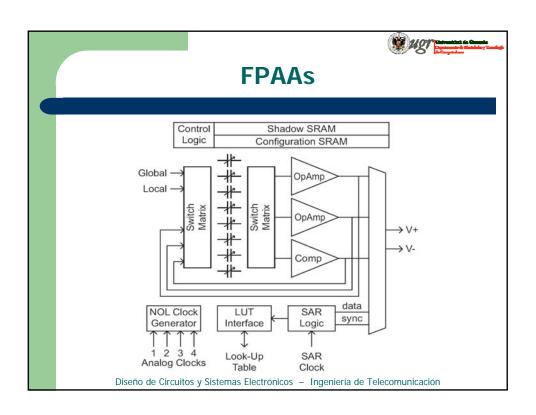
Estructuras analógicas programables

- Pese al auge de los sistemas digitales, no puede prescindirse de la electrónica analógica:
 - √ acondicionamiento y preprocesamiento de señal
 - ✓ interfaz entre transmisores y receptores digitales y las correspondientes antenas
- La introducción de dispositivos lógicos programables ha supuesto una gran revolución:
 - √ facilidad de prototipado
 - ✓ desarrollo de sistemas reprogramables con hardware dedicado
 - ✓ sustitución de ASICs en aplicaciones de volumen medio o bajo
 - ✓ recursos específicos para DSP, comunicaciones, etc.

Diseño de Circuitos y Sistemas Electrónicos - Ingeniería de Telecomunicación


Estructuras analógicas programables


- Recientemente han aparecido dispositivos comerciales que tratan de extender el concepto de la lógica programable al mundo analógico:
 - ✓ configuración basada en SRAM
 - ✓ bloques analógicos con parámetros programables: ganancia, offset
 - ✓ interfaz con sistemas digitales
- > Diferentes fabricantes están presentando diferentes alternativas:
 - ✓ Anadigm: FPAA (*Field-Programmable Analog Array*) y dpASP (*dinamically programmed Analog Signal Processor*)
 - ✓ Lattice: ispPAC
 - ✓ Zetex: TRAC (Total Reconfigurable Analog Circuit)



FPAAs

- > Las FPAAs son uno de los primeros dispositivos comerciales analógicos programables:
 - ✓ extienden el concepto de FPGA al mundo analógico
 - √ configuración basada en SRAM
 - ✓ programación por ROM o microprocesador
 - √ reconfiguración dinámica (125 ms)
 - √ alimentación 5V (digital)
 - ✓ E/S diferenciales
 - ✓ LUT para linealización y generación de señales arbitrarias
 - ✓ registro de aproximaciones sucesivas
 - ✓ multiplexor analógico de 4 a 1
 - ✓ 2MHz de ancho de banda

