La restricción presupestaria Preferencias y utilidad La elección del consumidor a demanda individual y la demanda del mercado

Sesión 1: La teoría del consumidor

Marc Vorsatz

- La restricción presupestaria
- Preferencias y utilidad
- 3 La elección del consumidor
- 4 La demanda individual y la demanda del mercado

El conjunto presupuestario y la recta de balance Variaciones de la renta y de los precios La intervención del Estado

El conjunto presupuestario y la recta de balance -1-

El análisis de la toma de decisiones del consumidor comienza con la despripción de las oportunidades: las combinaciones de bienes que se puede comprar.

• Sea M > 0 la renta monetaria del consumidor.

- Sea M > 0 la renta monetaria del consumidor.
- $x_i \ge 0$ es el consumo del bien i = 1, 2, ..., n.

- Sea M > 0 la renta monetaria del consumidor.
- $x_i \ge 0$ es el consumo del bien i = 1, 2, ..., n.
- $x = (x_1, x_2, ..., x_n) \in \mathbb{R}^n_+$ es un vector de consumo.

- Sea M > 0 la renta monetaria del consumidor.
- $x_i \ge 0$ es el consumo del bien i = 1, 2, ..., n.
- $x = (x_1, x_2, ..., x_n) \in \mathbb{R}^n_+$ es un vector de consumo.
- $p_i > 0$ es el precio del bien i = 1, 2, ..., n.

- Sea M > 0 la renta monetaria del consumidor.
- $x_i \ge 0$ es el consumo del bien i = 1, 2, ..., n.
- $x = (x_1, x_2, ..., x_n) \in \mathbb{R}^n_+$ es un vector de consumo.
- $p_i > 0$ es el precio del bien i = 1, 2, ..., n.
- $p = (p_1, p_2, ..., p_n) \in \mathbb{R}^n_{++}$ es el vector de precios.

Definición

El conjunto presupuestario está formado por todos los vectores de consumo que el consumidor puede adquirir dados los precios de los bienes y su renta monetaria.

Definición

El conjunto presupuestario está formado por todos los vectores de consumo que el consumidor puede adquirir dados los precios de los bienes y su renta monetaria.

$$B(\rho, M) \equiv \left\{ x \in \mathbb{R}^n_+ : \sum_{i=1}^n \rho_i \, x_i \leq M \right\}.$$

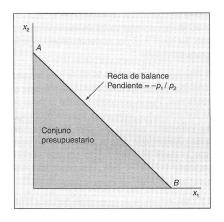
Definición

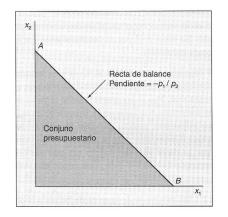
El conjunto presupuestario está formado por todos los vectores de consumo que el consumidor puede adquirir dados los precios de los bienes y su renta monetaria.

$$B(\rho, M) \equiv \left\{ x \in \mathbb{R}^n_+ : \sum_{i=1}^n \rho_i \, x_i \leq M \right\}.$$

Definición

La recta de balance es el conjunto de todos los vectores de consumo que el individuo puede adquirir gastándose exactamente toda su renta.



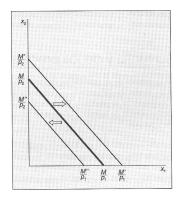


$$p_1 \cdot x_1 + p_2 \cdot x_2 = M.$$

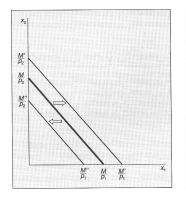
Entonces,

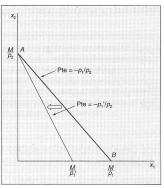
$$x_2 = \frac{M}{p_2} - \frac{p_1}{p_2} x_1$$

Variaciones de la renta y de los precios -1-



Variaciones de la renta y de los precios -1-





Hay dos tipos de impuestos que afectan a la recta de balance y al conjunto presupuestario:

⇒ impuestos sobre la renta monetaria y impuestos sobre los precios.

- ⇒ impuestos sobre la renta monetaria y impuestos sobre los precios.
 - 1. Impuesto relativo sobre la renta ϕ : $p_1 x_1 + p_2 x_2 = M(1 \phi)$.

- ⇒ impuestos sobre la renta monetaria y impuestos sobre los precios.
 - 1. Impuesto relativo sobre la renta ϕ : $p_1 x_1 + p_2 x_2 = M(1 \phi)$.
 - 2. Impuesto fijo sobre la renta T: $p_1 x_1 + p_2 x_2 = M T$.

- ⇒ impuestos sobre la renta monetaria y impuestos sobre los precios.
 - 1. Impuesto relativo sobre la renta ϕ : $p_1 x_1 + p_2 x_2 = M (1 \phi)$.
 - 2. Impuesto fijo sobre la renta T: $p_1 x_1 + p_2 x_2 = M T$.
 - 3. Impuesto sobre la cantidad consumida t: $(p_1 + t) x_1 + p_2 x_2 = M$.

- ⇒ impuestos sobre la renta monetaria y impuestos sobre los precios.
 - 1. Impuesto relativo sobre la renta ϕ : $p_1 x_1 + p_2 x_2 = M(1 \phi)$.
 - 2. Impuesto fijo sobre la renta T: $p_1 x_1 + p_2 x_2 = M T$.
 - 3. Impuesto sobre la cantidad consumida t: $(p_1 + t) x_1 + p_2 x_2 = M$.
 - 4. Impuesto sobre el valor τ : $(1+\tau) p_1 x_1 + p_2 x_2 = M$.

Para estudiar la elección del consumidor consideramos primero un marco totalmente abstracto y general.

Para estudiar la elección del consumidor consideramos primero un marco totalmente abstracto y general.

• Sea X el conjunto de todas las alternativas.

Para estudiar la elección del consumidor consideramos primero un marco totalmente abstracto y general.

- Sea X el conjunto de todas las alternativas.
- $x, y, z \in X$ son alternativas que pertenecen a X.

Para estudiar la elección del consumidor consideramos primero un marco totalmente abstracto y general.

- Sea X el conjunto de todas las alternativas.
- $x, y, z \in X$ son alternativas que pertenecen a X.
- Sea ≿ la preferencia débil sobre X.
 - $\Rightarrow x \succsim y$ significa que x es al menos tan buena como y.

Para estudiar la elección del consumidor consideramos primero un marco totalmente abstracto y general.

- Sea X el conjunto de todas las alternativas.
- $x, y, z \in X$ son alternativas que pertenecen a X.
- Sea ≿ la preferencia débil sobre X.
 - $\Rightarrow x \succsim y$ significa que x es al menos tan buena como y.

Imponemos dos requisitos mínimos de racionalidad sobre la relación \succsim .

Para estudiar la elección del consumidor consideramos primero un marco totalmente abstracto y general.

- Sea X el conjunto de todas las alternativas.
- $x, y, z \in X$ son alternativas que pertenecen a X.
- Sea ≿ la preferencia débil sobre X.
 - $\Rightarrow x \succeq y$ significa que x es al menos tan buena como y.

Imponemos dos requisitos mínimos de racionalidad sobre la relación \succsim .

• Completa: para todo $x, y \in X$, $x \succeq y$ o $y \succeq x$.

Para estudiar la elección del consumidor consideramos primero un marco totalmente abstracto y general.

- Sea X el conjunto de todas las alternativas.
- $x, y, z \in X$ son alternativas que pertenecen a X.
- Sea \succeq la preferencia débil sobre X.
 - $\Rightarrow x \succsim y$ significa que x es al menos tan buena como y.

Imponemos dos requisitos mínimos de racionalidad sobre la relación \succsim .

- Completa: para todo $x, y \in X$, $x \succeq y$ o $y \succeq x$.
- Transitiva: para todo $x, w, z \in X$, si $x \succeq w$ y $w \succeq z \Rightarrow x \succeq z$.

Las preferencias del consumidor Las curvas de indiferencia Ejemplos de funciones de utilidad La relación marginal de sustitució

Las preferencias del consumidor -2-

Definición

La relación de preferencias \succsim es racional si es completa y transitiva.

Definición

La relación de preferencias ≿ es **racional** si es completa y transitiva.

• Sea \succ la preferencia estricta inducida por X:

$$\Rightarrow x \succ z$$
 si y sólo si $x \succsim z$ y $z \not\succsim x$.

Definición

La relación de preferencias ≿ es racional si es completa y transitiva.

- Sea \succ la preferencia estricta inducida por X:
 - $\Rightarrow x \succ z$ si y sólo si $x \succsim z$ y $z \not\succsim x$.
- Sea \sim la relación de indiferencias inducida por X:

$$\Rightarrow x \sim \text{si y s\'olo si } x \succsim z \text{ y } z \succsim x.$$

Definición

La relación de preferencias ≿ es racional si es completa y transitiva.

- Sea \succ la preferencia estricta inducida por X:
 - $\Rightarrow x \succ z$ si y sólo si $x \succsim z$ y $z \npreceq x$.
- Sea \sim la relación de indiferencias inducida por X:

$$\Rightarrow x \sim \text{si y s\'olo si } x \succsim z \text{ y } z \succsim x.$$

Normalmente representamos preferencias con la ayuda de una función de utilidad (nos permite hacer comparaciones cardinales y no sólo ordinales).

Normalmente representamos preferencias con la ayuda de una función de utilidad (nos permite hacer comparaciones cardinales y no sólo ordinales).

Definición

Una función de utilidad $u: X \to \mathbb{R}$ representa la relación de preferencias \succsim sobre X si para todo $x, y \in X$, $x \succsim y \Leftrightarrow u(x) \ge u(y)$.

Las curvas de indiferencia -1-

Volvemos al marco cuando $X = \mathbb{R}^n_+$. Se puede representar las preferencias gráficamente a través de las curvas de indiferencias.

Las curvas de indiferencia -1-

Volvemos al marco cuando $X = \mathbb{R}^n_+$. Se puede representar las preferencias gráficamente a través de las curvas de indiferencias.

Definición

La curva de indiferencia de nivel U^0 es el conjunto de todos los vectores de consumo que reportan la utilidad u^0 al consumidor.

Las curvas de indiferencia -1-

Volvemos al marco cuando $X = \mathbb{R}^n_+$. Se puede representar las preferencias gráficamente a través de las curvas de indiferencias.

Definición

La curva de indiferencia de nivel U^0 es el conjunto de todos los vectores de consumo que reportan la utilidad u^0 al consumidor.

$$U^0 = \{x \in \mathbb{R}^n_+ : u(x) = u^0\}.$$

Volvemos al marco cuando $X = \mathbb{R}^n_+$. Se puede representar las preferencias gráficamente a través de las curvas de indiferencias.

Definición

La curva de indiferencia de nivel U^0 es el conjunto de todos los vectores de consumo que reportan la utilidad u^0 al consumidor.

$$U^0 = \{ x \in \mathbb{R}^n_+ : u(x) = u^0 \}.$$

Monotonía. Para todos $x, y \in \mathbb{R}^n_+$, si $y_i \ge x_i$ para todos los bienes i y $y_j > x_j$ para al menos un bien j, entonces $y \succ x$.

Volvemos al marco cuando $X = \mathbb{R}^n_+$. Se puede representar las preferencias gráficamente a través de las curvas de indiferencias.

Definición

La curva de indiferencia de nivel U^0 es el conjunto de todos los vectores de consumo que reportan la utilidad u^0 al consumidor.

$$U^0 = \{ x \in \mathbb{R}^n_+ : u(x) = u^0 \}.$$

Monotonía. Para todos $x, y \in \mathbb{R}^n_+$, si $y_i \ge x_i$ para todos los bienes i y $y_j > x_j$ para al menos un bien j, entonces $y \succ x$.

• Las curvas de indiferencias son decrecientes.

Volvemos al marco cuando $X = \mathbb{R}^n_+$. Se puede representar las preferencias gráficamente a través de las curvas de indiferencias.

Definición

La curva de indiferencia de nivel U^0 es el conjunto de todos los vectores de consumo que reportan la utilidad u^0 al consumidor.

$$U^0 = \{ x \in \mathbb{R}^n_+ : u(x) = u^0 \}.$$

Monotonía. Para todos $x, y \in \mathbb{R}^n_+$, si $y_i \ge x_i$ para todos los bienes i y $y_j > x_j$ para al menos un bien j, entonces $y \succ x$.

- Las curvas de indiferencias son decrecientes.
- Se prefieren curvas más alejadas del origin.

Volvemos al marco cuando $X = \mathbb{R}^n_+$. Se puede representar las preferencias gráficamente a través de las curvas de indiferencias.

Definición

La curva de indiferencia de nivel U^0 es el conjunto de todos los vectores de consumo que reportan la utilidad u^0 al consumidor.

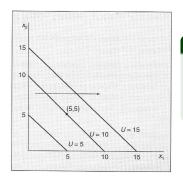
$$U^0 = \{ x \in \mathbb{R}^n_+ : u(x) = u^0 \}.$$

Monotonía. Para todos $x, y \in \mathbb{R}^n_+$, si $y_i \ge x_i$ para todos los bienes i y $y_j > x_j$ para al menos un bien j, entonces $y \succ x$.

- Las curvas de indiferencias son decrecientes.
- Se prefieren curvas más alejadas del origin.
- Las curvas de indiferencias no pueden cortarse.

Ejemplos de funciones de utilidad -1-

Sustitutivos perfectos

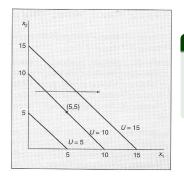


Definición

Dos bienes son **sustitutivos perfectos** si el consumidor está dispuesto a sustituir uno por otro a una tasa constante.

Ejemplos de funciones de utilidad -1-

Sustitutivos perfectos



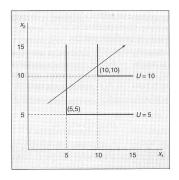
Definición

Dos bienes son **sustitutivos perfectos** si el consumidor está dispuesto a sustituir uno por otro a una tasa constante.

$$u(x_1, x_2) = x_1 + \alpha x_2$$
, donde $\alpha > 0$.

Ejemplos de funciones de utilidad -2-

Complementarios perfectos

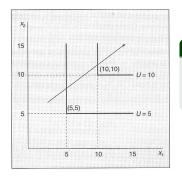


Definición

Los complementarios perfectos son bienes que siempre se consumen juntos en proporciones fijas.

Ejemplos de funciones de utilidad -2-

Complementarios perfectos



Definición

Los complementarios perfectos son bienes que siempre se consumen juntos en proporciones fijas.

$$u(x_1, x_2) = \min\{x_1, \beta x_2\}, \text{ donde } \beta > 0.$$

Ejemplos de funciones de utilidad -3-

Ya hemos visto algunas clases de preferencias que se pueden representar con gráficos sencillos. A continuación, nos concentramos en las llamadas preferencias regulares.

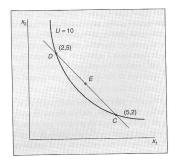
Ejemplos de funciones de utilidad -3-

Ya hemos visto algunas clases de preferencias que se pueden representar con gráficos sencillos. A continuación, nos concentramos en las llamadas preferencias regulares.

• Convexidad (estricta). Para todos $x,y,z\in\mathbb{R}^n_+$, en caso que $y\succsim x$ y $z\succsim x$, entonces $\alpha\,y+(1-\alpha)z\succ x$ para todo $\alpha\in[0,1]$.

Ejemplos de funciones de utilidad -4-

Preferencias regulares

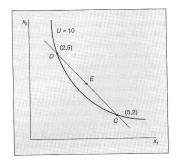


Definición

Un consumidor tiene **preferencias regulares**, si las preferencias son monótonas y convexas.

Ejemplos de funciones de utilidad -4-

Preferencias regulares



Definición

Un consumidor tiene **preferencias regulares**, si las preferencias son monótonas y convexas.

$$u(x_1, x_2) = x_1^{\alpha} \cdot x_2^{1-\alpha}, \text{ donde } \alpha > 0.$$

Va a ser útil referirse a la pendiente de las curvas de indiferencia en un determinado punto.

Va a ser útil referirse a la pendiente de las curvas de indiferencia en un determinado punto.

Si quitamos Δx_1 del consumo del bien 1, ¿cuál tiene que ser el aumento del consumo del bien 2, Δx_2 , tal que el individuo es indiferente entre el antiguo y el nuevo vector de consumo?

Va a ser útil referirse a la pendiente de las curvas de indiferencia en un determinado punto.

Si quitamos Δx_1 del consumo del bien 1, ¿cuál tiene que ser el aumento del consumo del bien 2, Δx_2 , tal que el individuo es indiferente entre el antiguo y el nuevo vector de consumo?

Definición

La relación marginal de sustitución (RMS) mide la tasa a la que el consumidor está dispuesto a sustituir un bien por el otro.

Va a ser útil referirse a la pendiente de las curvas de indiferencia en un determinado punto.

Si quitamos Δx_1 del consumo del bien 1, ¿cuál tiene que ser el aumento del consumo del bien 2, Δx_2 , tal que el individuo es indiferente entre el antiguo y el nuevo vector de consumo?

Definición

La relación marginal de sustitución (RMS) mide la tasa a la que el consumidor está dispuesto a sustituir un bien por el otro.

$$RMS = -\left. \frac{\Delta x_2}{\Delta x_1} \right|_{u=u^0}$$

Va a ser útil referirse a la pendiente de las curvas de indiferencia en un determinado punto.

Si quitamos Δx_1 del consumo del bien 1, ¿cuál tiene que ser el aumento del consumo del bien 2, Δx_2 , tal que el individuo es indiferente entre el antiguo y el nuevo vector de consumo?

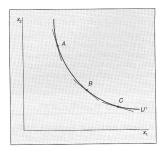
Definición

La relación marginal de sustitución (RMS) mide la tasa a la que el consumidor está dispuesto a sustituir un bien por el otro.

$$RMS = -\left. \frac{\Delta x_2}{\Delta x_1} \right|_{u=u^0}$$

Cuando $\Delta x_1 \rightarrow 0$, la *RMS* se aproxima al valor absoluto de la pendiente de la curva de indiferencia.

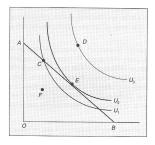
Cuando $\Delta x_1 \rightarrow 0$, la *RMS* se aproxima al valor absoluto de la pendiente de la curva de indiferencia.



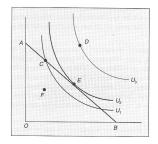
Demostramos que la *RMS* está relacionada con la *utilidad marginal*, el incremento en la utilidad si el consumo aumenta marginalmente.

$$\Delta u = \frac{\partial u}{\partial x_1} \Delta x_1 + \frac{\partial u}{\partial x_2} \Delta x_2 = 0 \Leftrightarrow \frac{\partial u}{\partial x_1} \left/ \frac{\partial u}{\partial x_2} = -\frac{\Delta x_2}{\Delta x_1} = \textit{RMS}. \right.$$

La elección óptima: Análisis gráfico -1-



La elección óptima: Análisis gráfico -1-



• Condición 1. El punto óptimo tiene que estar en la recta de balance:

$$p_1 x_1 + p_2 x_2 = M.$$

 Condición 2. En el punto óptimo la recta de balance es tangente a la curva de indiferencia:

$$\frac{p_1}{p_2} = -\frac{\Delta x_2}{\Delta x_1} = \frac{\partial u}{\partial x_1} / \frac{\partial u}{\partial x_2} .$$

Preferencias regulares

Ejemplo

Sea $u(x_1, x_2) = x_1^{\alpha} x_2^{1-\alpha}$, con $\alpha \in (0, 1)$. Hallar las demandas óptimas.

Preferencias regulares

Ejemplo

Sea $u(x_1, x_2) = x_1^{\alpha} x_2^{1-\alpha}$, con $\alpha \in (0, 1)$. Hallar las demandas óptimas.

• De la condición 2,

$$\frac{p_1}{p_2} = \frac{\alpha x_1^{\alpha - 1} x_2^{1 - \alpha}}{(1 - \alpha) x_1^{\alpha} x_2^{-\alpha}} =$$

Preferencias regulares

Ejemplo

Sea $u(x_1, x_2) = x_1^{\alpha} x_2^{1-\alpha}$, con $\alpha \in (0, 1)$. Hallar las demandas óptimas.

• De la condición 2,

$$\frac{p_1}{p_2} = \frac{\alpha \, x_1^{\alpha - 1} \, x_2^{1 - \alpha}}{(1 - \alpha) \, x_1^{\alpha} \, x_2^{-\alpha}} = \frac{\alpha}{1 - \alpha} \, \frac{x_2}{x_1}$$

Preferencias regulares

Ejemplo

Sea $u(x_1, x_2) = x_1^{\alpha} x_2^{1-\alpha}$, con $\alpha \in (0, 1)$. Hallar las demandas óptimas.

• De la condición 2.

$$\frac{p_1}{p_2} = \frac{\alpha \, x_1^{\alpha - 1} \, x_2^{1 - \alpha}}{(1 - \alpha) \, x_1^{\alpha} \, x_2^{-\alpha}} = \frac{\alpha}{1 - \alpha} \, \frac{x_2}{x_1} \Leftrightarrow x_1^* = \frac{\alpha}{1 - \alpha} \, \frac{p_2}{p_1} \, x_2.$$

Preferencias regulares

Ejemplo

Sea $u(x_1, x_2) = x_1^{\alpha} x_2^{1-\alpha}$, con $\alpha \in (0, 1)$. Hallar las demandas óptimas.

• De la condición 2,

$$\frac{p_1}{p_2} = \frac{\alpha \, x_1^{\alpha - 1} \, x_2^{1 - \alpha}}{(1 - \alpha) \, x_1^{\alpha} \, x_2^{-\alpha}} = \frac{\alpha}{1 - \alpha} \, \frac{x_2}{x_1} \Leftrightarrow x_1^* = \frac{\alpha}{1 - \alpha} \, \frac{p_2}{p_1} \, x_2.$$

• Sustituyendo esta ecuación en la recta de balance,

$$p_1 \frac{\alpha}{1-\alpha} \frac{p_2}{p_1} x_2 + p_2 x_2 = M$$

Preferencias regulares

Ejemplo

Sea $u(x_1, x_2) = x_1^{\alpha} x_2^{1-\alpha}$, con $\alpha \in (0, 1)$. Hallar las demandas óptimas.

• De la condición 2,

$$\frac{p_1}{p_2} = \frac{\alpha \, x_1^{\alpha - 1} \, x_2^{1 - \alpha}}{(1 - \alpha) \, x_1^{\alpha} \, x_2^{-\alpha}} = \frac{\alpha}{1 - \alpha} \, \frac{x_2}{x_1} \Leftrightarrow x_1^* = \frac{\alpha}{1 - \alpha} \, \frac{p_2}{p_1} \, x_2.$$

• Sustituyendo esta ecuación en la recta de balance,

$$p_1 \frac{\alpha}{1-\alpha} \frac{p_2}{p_1} x_2 + p_2 x_2 = M \Leftrightarrow x_2^*(p,M) = \frac{1-\alpha}{p_2} M.$$

Preferencias regulares

Ejemplo

Sea $u(x_1, x_2) = x_1^{\alpha} x_2^{1-\alpha}$, con $\alpha \in (0, 1)$. Hallar las demandas óptimas.

De la condición 2.

$$\frac{p_1}{p_2} = \frac{\alpha \, x_1^{\alpha - 1} \, x_2^{1 - \alpha}}{(1 - \alpha) \, x_1^{\alpha} \, x_2^{-\alpha}} = \frac{\alpha}{1 - \alpha} \, \frac{x_2}{x_1} \Leftrightarrow x_1^* = \frac{\alpha}{1 - \alpha} \, \frac{p_2}{p_1} \, x_2.$$

• Sustituyendo esta ecuación en la recta de balance,

$$p_1 \frac{\alpha}{1-\alpha} \frac{p_2}{p_1} x_2 + p_2 x_2 = M \Leftrightarrow x_2^*(p,M) = \frac{1-\alpha}{p_2} M.$$

• Sustituyendo esta condición en la ecuación anterior,

$$x_1^*(p, M) = \frac{\alpha}{1-\alpha} \frac{p_2}{p_1} \frac{1-\alpha}{p_2} M$$

Marc Vorsatz

Preferencias regulares

Ejemplo

Sea $u(x_1, x_2) = x_1^{\alpha} x_2^{1-\alpha}$, con $\alpha \in (0, 1)$. Hallar las demandas óptimas.

• De la condición 2,

$$\frac{p_1}{p_2} = \frac{\alpha \, x_1^{\alpha - 1} \, x_2^{1 - \alpha}}{\left(1 - \alpha\right) \, x_1^{\alpha} \, x_2^{-\alpha}} = \frac{\alpha}{1 - \alpha} \, \frac{x_2}{x_1} \Leftrightarrow x_1^* = \frac{\alpha}{1 - \alpha} \, \frac{p_2}{p_1} \, x_2.$$

• Sustituyendo esta ecuación en la recta de balance,

$$p_1 \frac{\alpha}{1-\alpha} \frac{p_2}{p_1} x_2 + p_2 x_2 = M \Leftrightarrow x_2^*(p,M) = \frac{1-\alpha}{p_2} M.$$

• Sustituyendo esta condición en la ecuación anterior,

$$x_1^*(p,M) = \frac{\alpha}{1-\alpha} \frac{p_2}{p_1} \frac{1-\alpha}{p_2} M = \frac{\alpha}{p_1} M.$$

Marc Vorsatz

Sesión 1: La teoría del consumidor

Sustitutivos perfectos

Ejemplo

Sustitutivos perfectos

Ejemplo

•
$$u(0,1) = u(\alpha,0) = \alpha$$
.

Sustitutivos perfectos

Ejemplo

•
$$u(0,1) = u(\alpha,0) = \alpha$$
.

• Si
$$\alpha p_1 < p_2$$
, $x_1^*(p, M) = \frac{M}{p_1}$ y $x_2^*(p, M) = 0$.

Sustitutivos perfectos

Ejemplo

•
$$u(0,1) = u(\alpha,0) = \alpha$$
.

• Si
$$\alpha p_1 < p_2$$
, $x_1^*(p, M) = \frac{M}{p_1}$ y $x_2^*(p, M) = 0$.

• Si
$$\alpha p_1 > p_2$$
, $x_1^*(p, M) = 0$ y $x_2^*(p, M) = \frac{M}{p_2}$.

Sustitutivos perfectos

Ejemplo

- $u(0,1) = u(\alpha,0) = \alpha$.
- Si $\alpha p_1 < p_2$, $x_1^*(p, M) = \frac{M}{p_1}$ y $x_2^*(p, M) = 0$.
- Si $\alpha p_1 > p_2$, $x_1^*(p, M) = 0$ y $x_2^*(p, M) = \frac{M}{p_2}$.
- Si $\alpha p_1 = p_2$, $x_1^* \in [0, \frac{M}{p_1}]$ y $x_2^* \in [0, \frac{M}{p_2}]$ tal que $p_1 x_1^* + p_2 x_2^* = M$.

Complementarios perfectos

Ejemplo

 $u(x_1, x_2) = \min\{x_1, \beta x_2\}$, con $\beta > 0$. Hallar las demandas óptimas.

Complementarios perfectos

Ejemplo

$$u(x_1, x_2) = \min\{x_1, \beta x_2\}, \text{ con } \beta > 0. \text{ Hallar las demandas óptimas.}$$

• Para cada unidad comprada del bien 2, el individuo compra β unidades del bien 1:

$$x_2^*(p, M) = \beta x_1^*(p, M).$$

La elección para diferentes tipos de preferencias -3-

Complementarios perfectos

Ejemplo

 $u(x_1, x_2) = \min\{x_1, \beta x_2\}$, con $\beta > 0$. Hallar las demandas óptimas.

• Para cada unidad comprada del bien 2, el individuo compra β unidades del bien 1:

$$x_2^*(p, M) = \beta x_1^*(p, M).$$

• De la recta de balance.

$$p_1 x_1 + p_2 \beta x_1^* = M$$

La elección para diferentes tipos de preferencias -3-

Complementarios perfectos

Ejemplo

 $u(x_1, x_2) = \min\{x_1, \beta x_2\}$, con $\beta > 0$. Hallar las demandas óptimas.

• Para cada unidad comprada del bien 2, el individuo compra β unidades del bien 1:

$$x_2^*(p, M) = \beta x_1^*(p, M).$$

• De la recta de balance.

$$p_1 x_1 + p_2 \beta x_1^* = M \Leftrightarrow x_1^*(p, M) = \frac{M}{p_1 + \beta p_2}.$$

La elección para diferentes tipos de preferencias -3-

Complementarios perfectos

Ejemplo

$$u(x_1, x_2) = \min\{x_1, \beta x_2\}$$
, con $\beta > 0$. Hallar las demandas óptimas.

• Para cada unidad comprada del bien 2, el individuo compra β unidades del bien 1:

$$x_2^*(p, M) = \beta x_1^*(p, M).$$

• De la recta de balance,

$$p_1 x_1 + p_2 \beta x_1^* = M \Leftrightarrow x_1^*(p, M) = \frac{M}{p_1 + \beta p_2}.$$

Entonces,

$$x_2^*(p, M) = \beta x_1^*(p, M) = \frac{\beta M}{p_1 + \beta p_2}.$$

Consideramos el siguiente problema de maximización de utilidad:

$$\max_{x_1,x_2 \in \mathbb{R}_+} u(x_1,x_2) \text{ s.a. } p_1 x_1 + p_2 x_2 \leq M.$$

Consideramos el siguiente problema de maximización de utilidad:

$$\max_{x_1, x_2 \in \mathbb{R}_+} \, u(x_1, x_2) \text{ s.a. } p_1 \, x_1 + p_2 \, x_2 \leq M.$$

Definimos la función auxiliar conocida como lagrangiano

$$L = u(x_1, x_2) - \lambda(p_1 x_1 + p_2 x_2 - M).$$

Consideramos el siguiente problema de maximización de utilidad:

$$\max_{x_1,x_2 \in \mathbb{R}_+} u(x_1,x_2)$$
 s.a. $p_1 x_1 + p_2 x_2 \leq M$.

Definimos la función auxiliar conocida como lagrangiano

$$L = u(x_1, x_2) - \lambda(p_1 x_1 + p_2 x_2 - M).$$

La elección óptima tiene que satisfacer las condiciones de primer orden del problema de maximización de *L*:

$$\frac{\partial L}{\partial x_1} = \frac{\partial u(x)}{\partial x_1} - \lambda p_1 = 0$$

Consideramos el siguiente problema de maximización de utilidad:

$$\max_{x_1,x_2 \in \mathbb{R}_+} u(x_1,x_2)$$
 s.a. $p_1 x_1 + p_2 x_2 \leq M$.

Definimos la función auxiliar conocida como lagrangiano

$$L = u(x_1, x_2) - \lambda(p_1 x_1 + p_2 x_2 - M).$$

La elección óptima tiene que satisfacer las condiciones de primer orden del problema de maximización de *L*:

$$\frac{\partial L}{\partial x_1} = \frac{\partial u(x)}{\partial x_1} - \lambda p_1 = 0$$

$$\frac{\partial L}{\partial x_2} = \frac{\partial u(x)}{\partial x_2} - \lambda p_2 = 0$$

Consideramos el siguiente problema de maximización de utilidad:

$$\max_{x_1, x_2 \in \mathbb{R}_+} u(x_1, x_2)$$
 s.a. $p_1 x_1 + p_2 x_2 \leq M$.

Definimos la función auxiliar conocida como lagrangiano

$$L = u(x_1, x_2) - \lambda(p_1 x_1 + p_2 x_2 - M).$$

La elección óptima tiene que satisfacer las condiciones de primer orden del problema de maximización de L:

$$\frac{\partial L}{\partial x_1} = \frac{\partial u(x)}{\partial x_1} - \lambda p_1 = 0$$

$$\frac{\partial L}{\partial x_2} = \frac{\partial u(x)}{\partial x_2} - \lambda p_2 = 0$$

$$\frac{\partial L}{\partial \lambda} = p_1 x_1 + p_2 x_2 - M = 0$$

Estudiamos como varía la demanda óptima en función de la renta.

Estudiamos como varía la demanda óptima en función de la renta.

Definición

Un bien i es un **bien normal** siempre cuando la cantidad demandada varía en la misma forma que la renta:

Estudiamos como varía la demanda óptima en función de la renta.

Definición

Un bien i es un bien normal siempre cuando la cantidad demandada varía en la misma forma que la renta:

$$\frac{\partial x_i(p,M)}{\partial M}>0.$$

Estudiamos como varía la demanda óptima en función de la renta.

Definición

Un bien i es un **bien normal** siempre cuando la cantidad demandada varía en la misma forma que la renta:

$$\frac{\partial x_i(p,M)}{\partial M}>0.$$

Definición

Un bien i es un **bien inferior** siempre cuando la cantidad demandada varía en la dirección opuesta que la renta:

Estudiamos como varía la demanda óptima en función de la renta.

Definición

Un bien i es un **bien normal** siempre cuando la cantidad demandada varía en la misma forma que la renta:

$$\frac{\partial x_i(p,M)}{\partial M}>0.$$

Definición

Un bien i es un **bien inferior** siempre cuando la cantidad demandada varía en la dirección opuesta que la renta:

$$\frac{\partial x_i(p,M)}{\partial M}<0$$

Definición

La curva de Engel de un bien i muestra la relación entre la cantidad consumida de un bien y el nivel de renta, dados unos precios que se mantienen constantes:

Definición

La curva de Engel de un bien i muestra la relación entre la cantidad consumida de un bien y el nivel de renta, dados unos precios que se mantienen constantes:

$$E_i(\bar{p},M)=\{M\geq 0:x_i(\bar{p},M)\}.$$

Definición

La curva de Engel de un bien i muestra la relación entre la cantidad consumida de un bien y el nivel de renta, dados unos precios que se mantienen constantes:

$$E_i(\bar{p},M)=\{M\geq 0:x_i(\bar{p},M)\}.$$

Definición

La curva de oferta-renta resulta de unir todas las demandas óptimas del consumidor que se alcanzan al variar la renta monetaria manteniendo los precios fijos:

Definición

La curva de Engel de un bien i muestra la relación entre la cantidad consumida de un bien y el nivel de renta, dados unos precios que se mantienen constantes:

$$E_i(\bar{p},M)=\{M\geq 0:x_i(\bar{p},M)\}.$$

Definición

La curva de oferta-renta resulta de unir todas las demandas óptimas del consumidor que se alcanzan al variar la renta monetaria manteniendo los precios fijos:

$$E(\bar{p},M)=\{M\geq 0: x(\bar{p},M)\}.$$

Ejercicio

Calcular la curva de oferta-renta y las curvas de Engel cuando el consumidor tiene preferencias del tipo Cobb-Douglas: $u(x_1, x_2) = x_1^{\alpha} x_2^{1-\alpha}$

Ejercicio

Calcular la curva de oferta-renta y las curvas de Engel cuando el consumidor tiene preferencias del tipo Cobb-Douglas: $u(x_1, x_2) = x_1^{\alpha} x_2^{1-\alpha}$

Sabemos que

$$x^*(p, M) = \left(\alpha \frac{M}{p_1}, (1-\alpha) \frac{M}{p_2}\right).$$

Ejercicio

Calcular la curva de oferta-renta y las curvas de Engel cuando el consumidor tiene preferencias del tipo Cobb-Douglas: $u(x_1, x_2) = x_1^{\alpha} x_2^{1-\alpha}$

Sabemos que

$$x^*(p, M) = \left(\alpha \frac{M}{p_1}, (1-\alpha) \frac{M}{p_2}\right).$$

Por tanto, las curvas de Engel son

$$M = \frac{p_1}{\alpha} x_1$$

Ejercicio

Calcular la curva de oferta-renta y las curvas de Engel cuando el consumidor tiene preferencias del tipo Cobb-Douglas: $u(x_1, x_2) = x_1^{\alpha} x_2^{1-\alpha}$

Sabemos que

$$x^*(p,M) = \left(\alpha \frac{M}{p_1}, (1-\alpha) \frac{M}{p_2}\right).$$

• Por tanto, las curvas de Engel son

$$M = \frac{p_1}{\alpha} x_1$$
 y $M = \frac{p_2}{1-\alpha} x_2$.

Ejercicio

Calcular la curva de oferta-renta y las curvas de Engel cuando el consumidor tiene preferencias del tipo Cobb-Douglas: $u(x_1, x_2) = x_1^{\alpha} x_2^{1-\alpha}$

Sabemos que

$$x^*(p, M) = \left(\alpha \frac{M}{p_1}, (1-\alpha) \frac{M}{p_2}\right).$$

• Por tanto, las curvas de Engel son

$$M = \frac{p_1}{\alpha} x_1$$
 y $M = \frac{p_2}{1 - \alpha} x_2$.

• Juntando las dos curvas de Engel obtenemos la curva oferta-renta:

$$\frac{p_1}{\alpha} x_1 = \frac{p_2}{1-\alpha} x_2 = M$$

Ejercicio

Calcular la curva de oferta-renta y las curvas de Engel cuando el consumidor tiene preferencias del tipo Cobb-Douglas: $u(x_1, x_2) = x_1^{\alpha} x_2^{1-\alpha}$

Sabemos que

$$x^*(p, M) = \left(\alpha \frac{M}{p_1}, (1-\alpha) \frac{M}{p_2}\right).$$

• Por tanto, las curvas de Engel son

$$M = \frac{p_1}{\alpha} x_1$$
 y $M = \frac{p_2}{1 - \alpha} x_2$.

• Juntando las dos curvas de Engel obtenemos la curva oferta-renta:

$$\frac{p_1}{\alpha} x_1 = \frac{p_2}{1-\alpha} x_2 = M \Leftrightarrow x_2 = \frac{p_1}{p_2} \cdot \frac{1-\alpha}{\alpha} \cdot x_1.$$

Estudiamos como varía la demanda óptima en función de los precios.

Estudiamos como varía la demanda óptima en función de los precios.

Definición

Un bien i es un **bien ordenario** siempre cuando la cantidad demandada varía en la dirección opuesta que su precio:

Estudiamos como varía la demanda óptima en función de los precios.

Definición

Un bien i es un **bien ordenario** siempre cuando la cantidad demandada varía en la dirección opuesta que su precio:

$$\frac{\partial x_i(p,M)}{\partial p_i} < 0.$$

Estudiamos como varía la demanda óptima en función de los precios.

Definición

Un bien i es un **bien ordenario** siempre cuando la cantidad demandada varía en la dirección opuesta que su precio:

$$\frac{\partial x_i(p,M)}{\partial p_i} < 0.$$

Definición

Un bien i es un **bien Giffen** siempre cuando la cantidad demandada varía en la misma forma que su precio:

Estudiamos como varía la demanda óptima en función de los precios.

Definición

Un bien i es un **bien ordenario** siempre cuando la cantidad demandada varía en la dirección opuesta que su precio:

$$\frac{\partial x_i(p,M)}{\partial p_i}<0.$$

Definición

Un bien i es un **bien Giffen** siempre cuando la cantidad demandada varía en la misma forma que su precio:

$$\frac{\partial x_i(p,M)}{\partial p_i} > 0.$$

Definición

La curva de demanda de un bien i con respecto al precio p_j muestra la relación entre la cantidad consumida del bien i y el precio p_j manteniendo fijo y el nivel de renta y todos los otros precios:

Definición

La curva de demanda de un bien i con respecto al precio p_j muestra la relación entre la cantidad consumida del bien i y el precio p_j manteniendo fijo y el nivel de renta y todos los otros precios:

$$E_i(p_j, \bar{p}_{-j}, \bar{M}) = \{p_j > 0 : x_i(p_j, \bar{p}_{-j}, \bar{M})\}.$$

Definición

La curva de demanda de un bien i con respecto al precio p_j muestra la relación entre la cantidad consumida del bien i y el precio p_j manteniendo fijo y el nivel de renta y todos los otros precios:

$$E_i(p_j, \bar{p}_{-j}, \bar{M}) = \{p_j > 0 : x_i(p_j, \bar{p}_{-j}, \bar{M})\}.$$

Definición

La curva de precio-consumo resulta de unir todas las demandas óptimas del consumidor que se alcanzan al variar el precio de un bien manteniendo fijo el precio de los otros bienes y la renta:

Definición

La curva de demanda de un bien i con respecto al precio p_j muestra la relación entre la cantidad consumida del bien i y el precio p_j manteniendo fijo y el nivel de renta y todos los otros precios:

$$E_i(p_j, \bar{p}_{-j}, \bar{M}) = \{p_j > 0 : x_i(p_j, \bar{p}_{-j}, \bar{M})\}.$$

Definición

La curva de precio-consumo resulta de unir todas las demandas óptimas del consumidor que se alcanzan al variar el precio de un bien manteniendo fijo el precio de los otros bienes y la renta:

$$E(p_i, \bar{p}_{-i}, \bar{M}) = \{p_i > 0 : x(p_i, \bar{p}_{-i}, \bar{M})\}.$$

Ejercicio

Calcular la curva precio-consumo y las curvas de demanda con respecto a p_1 cuando el consumidor tiene preferencias del tipo Cobb-Douglas: $u(x_1, x_2) = x_1^{\alpha} x_2^{1-\alpha}$.

Variaciones de los pre<u>cios -3-</u>

Ejercicio

Calcular la curva precio-consumo y las curvas de demanda con respecto a p₁ cuando el consumidor tiene preferencias del tipo Cobb-Douglas: $u(x_1,x_2)=x_1^{\alpha}x_2^{1-\alpha}.$

Sabemos que

$$x^*(p, M) = \left(\alpha \frac{M}{p_1}, (1-\alpha) \frac{M}{p_2}\right).$$

Ejercicio

Calcular la curva precio-consumo y las curvas de demanda con respecto a p_1 cuando el consumidor tiene preferencias del tipo Cobb-Douglas: $u(x_1,x_2)=x_1^{\alpha}\,x_2^{1-\alpha}$.

Sabemos que

$$x^*(p, M) = \left(\alpha \frac{M}{p_1}, (1-\alpha) \frac{M}{p_2}\right).$$

• Por tanto, las curvas de demanda con respecto al bien 1 son

$$p_1 = \frac{\alpha M}{x_1}$$

Ejercicio

Calcular la curva precio-consumo y las curvas de demanda con respecto a p_1 cuando el consumidor tiene preferencias del tipo Cobb-Douglas: $u(x_1, x_2) = x_1^{\alpha} x_2^{1-\alpha}$.

Sabemos que

$$x^*(p, M) = \left(\alpha \frac{M}{p_1}, (1-\alpha) \frac{M}{p_2}\right).$$

• Por tanto, las curvas de demanda con respecto al bien 1 son

$$p_1 = \frac{\alpha M}{x_1}$$
 y $x_2 = \frac{1-\alpha}{p_2} M$.

Variaciones de los precios -3-

Ejercicio

Calcular la curva precio-consumo y las curvas de demanda con respecto a p_1 cuando el consumidor tiene preferencias del tipo Cobb-Douglas: $u(x_1, x_2) = x_1^{\alpha} x_2^{1-\alpha}$.

Sabemos que

$$x^*(p, M) = \left(\alpha \frac{M}{p_1}, (1-\alpha) \frac{M}{p_2}\right).$$

• Por tanto, las curvas de demanda con respecto al bien 1 son

$$p_1 = \frac{\alpha M}{x_1}$$
 y $x_2 = \frac{1-\alpha}{p_2} M$.

• La curva demanda-consumo es

$$x_2 = \frac{1-\alpha}{p_2} M.$$

La elasticidad -1-

La elasticidad mide el grado de variación de la función de demanda.

La elasticidad -1-

La elasticidad mide el grado de variación de la función de demanda.

Definición

La elasticidad de la demanda del bien i con respecto al precio del bien i se define como el cociente entre el cambio porcentual en la cantidad demandada y el cambio porcentual en el precio del bien:

La elasticidad mide el grado de variación de la función de demanda.

Definición

La elasticidad de la demanda del bien i con respecto al precio del bien j se define como el cociente entre el cambio porcentual en la cantidad demandada y el cambio porcentual en el precio del bien:

$$\varepsilon_{i,j}(p,M) = \frac{\partial x_i(p,M)}{\partial p_j} \frac{p_j}{x_i(p,M)}.$$

$\begin{array}{|c|c|c|c|}\hline \text{Valor absoluto de } |\varepsilon_{i,i}(p,M)| & \text{Terminolog\'(a de la curva} \\ \hline |\varepsilon_{i,i}| > 1 & \text{Elástica} \\ \hline |\varepsilon_{i,i}| \to \infty & \text{Perfectamente elástica} \\ \hline |\varepsilon_{i,i}| < 1 & \text{Inelástica} \\ \hline |\varepsilon_{i,i}| = 0 & \text{Perfectamente inelástica} \\ \hline |\varepsilon_{i,i}| = 1 & \text{Elasticidad unitaria} \\ \hline \end{array}$

La elasticidad -2-

Valor absoluto de $ \varepsilon_{i,i}(p,M) $	Terminología de la curva
$ arepsilon_{i,i} > 1$	Elástica
$ \varepsilon_{i,i} \to \infty$	Perfectamente elástica
$ arepsilon_{i,i} < 1$	Inelástica
$ arepsilon_{i,i} =0$	Perfectamente inelástica
$ertarepsilon_{i,i}ert=1$	Elasticidad unitaria

Valor de la elasticidad cruzada	Relación entre ambos bienes
$\varepsilon_{i,j} > 0$	Bienes sustitutivos
$\varepsilon_{i,j} < 0$	Bienes complementarios
$ arepsilon_{i,j} =0$	Bienes independientes

Variaciones de la renta Variaciones de los precio La elasticidad La demanda agregada

La elasticidad -3-

Definición

La elasticidad de la demanda del bien i con respecto a la renta M se define como el cociente entre el cambio porcentual en la cantidad demandada y el cambio porcentual en la renta:

La elasticidad -3-

Definición

La elasticidad de la demanda del bien i con respecto a la renta Mse define como el cociente entre el cambio porcentual en la cantidad demandada y el cambio porcentual en la renta:

$$\varepsilon_{i,M}(p,M) = \frac{\partial x_i(p,M)}{\partial M} \frac{M}{x_i(p,M)}.$$

Definición

La elasticidad de la demanda del bien i con respecto a la renta M se define como el cociente entre el cambio porcentual en la cantidad demandada y el cambio porcentual en la renta:

$$\varepsilon_{i,M}(p,M) = \frac{\partial x_i(p,M)}{\partial M} \frac{M}{x_i(p,M)}.$$

• Si $\varepsilon_{i,M} > 1$, el bien es un bien de lujo.

Definición

La elasticidad de la demanda del bien i con respecto a la renta M se define como el cociente entre el cambio porcentual en la cantidad demandada y el cambio porcentual en la renta:

$$\varepsilon_{i,M}(p,M) = \frac{\partial x_i(p,M)}{\partial M} \frac{M}{x_i(p,M)}.$$

- Si $\varepsilon_{i,M} > 1$, el bien es un bien de lujo.
- Si $0 < \varepsilon_{i,M} < 1$, el bien es necesario.

Definición

La elasticidad de la demanda del bien i con respecto a la renta M se define como el cociente entre el cambio porcentual en la cantidad demandada y el cambio porcentual en la renta:

$$\varepsilon_{i,M}(p,M) = \frac{\partial x_i(p,M)}{\partial M} \frac{M}{x_i(p,M)}.$$

- Si $\varepsilon_{i,M} > 1$, el bien es un bien de lujo.
- Si $0 < \varepsilon_{i,M} < 1$, el bien es necesario.
- Si $\varepsilon_{i,M}$ < 0, el bien es inferior.

La demanda agregada -1-

Ejercicio

Supongamos que existen dos consumidores cuyas demandas del bien x son:

$$x^A = 60 - 2p$$

y

$$x^B = 90 - 3p$$
.

- Representar gráficamente las demandas individuales y la demanda de mercado.
- Obtener la forma funcional de la demanda de mercado.