
Chapter 4 - MATRIX ALGEBRA

4.1. Matrix Operations

A =




a11 a12 . . . a1j . . . a1n
a21 a22 . . . a2j . . . a2n

... ... ...

ai1 ai2 . . . aij . . . ain
... ... ...

am1 am2 . . . amj . . . amn




• The entry in the ith row and the jth column of a matrix

A is refered to as (A)ij.

EXAMPLE:
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• A zero matrix is a matrix, written 0, whose entries are all

zero.

• A square matrix has the same number of rows than

columns.

• In general (m 6= n), matrices are rectangular.

• The (main) diagonal of a matrix, or its diagonal entries,

are the entries

• A diagonal matrix has all its nondiagonal entries equal

to zero.




0 1 0

1 0 −1

−1 0 0







0 0

0 0

0 0







1 0 0 0

0 −1 0 0

0 0 0 0

0 0 0 1
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• A matrix is upper triangular if all its elements under the

diagonal are zero

• A matrix is lower triangular if all its elements over the

diagonal are zero

• The set of all possible matrices of dimension (m × n)

whose entries are real numbers is refered to as Rm×n

• The set of all possible matrices of dimension (m × n)

whose entries are complex numbers is refered to as Cm×n




0 1 0

0 1 −1

0 0 −1







2 0 0 0

0 0 0 0

0 0 −1 0

0 0 0 4







2 2

7 1

3 −3


 ∈ K3×2
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• OPERATIONS:
Only for matrices with the same dimensions:

◦ Equality. Two matrices are equal if and only if their

corresponding entries are equal.

[
3 −1

1 0

]
6=
[ ]

6=
[ ]

◦ Addition. A matrix whose entries are the sum of the

corresponding entries of the matrices.



0 −1

1 0

2 0


 +




1 −1

−1 0

−1 2


 =
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◦ Scalar Multiplication. A matrix whose entries are the

corresponding entries of the matrix multiplied by the scalar.

2




0 −1

1 0

2 0


 =







• PROPERTIES:

Let A, B and C be matrices of Km×n and λ, µ ∈ K:

◦ A+B = B +A ◦ λ (A+B) = λA+λB

◦ A+(B+C)=(A+B)+C ◦ (λ+µ)A = λA+µA

◦ A+ 0 = A ◦ λ (µA) = (λµ)A
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Matrix Multiplication

Kp Kn Km

One wonders:

Does C exist | C x = AB x ∀ x ∈ Kp ?

PROBLEM: What dimensions would C have?
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If we write B = [ b1 b2 . . . bp ] and x =



x1
...

xp


, then:

Bx = x1b1 + x2b2 + · · ·+ xpbp

A(Bx) =

=

=

= =
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• Let A be an (m × n) matrix and let B be an (n × p)
matrix with columns b1, b2, . . . , bp. The matrix product
of A by B is the (m × p) matrix AB whose columns are

Ab1, Ab2, . . . , Abp.

That is,

AB = A [ b1 b2 . . . bp ] = [ Ab1 Ab2 . . . Abp ]

Warning: The dimensions of the matrices involved in a product must verify

A B = C

( ) ( ) ( )
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EXAMPLE:

[
2 3

1 −5

] [
4 3 6

1 −2 3

]
=

( ) ( ) ⇒ ( )

=

[ [
2 3

1 −5

][ ] [
2 3

1 −5

][ ] [
2 3

1 −5

][ ] ]
=

=

[ [ ] [ ] [ ] ]
=

[ ]
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Row-Column Rule for computing AB

Consider A ∈ Km×n, and B = [ b1 . . . bp ] ∈ Kn×p such

that (A)ik = aik, and (B)kj = bkj.

AB = [ Ab1 · · · Abj · · · Abp ]
︷ ︸︸ ︷



a11 a12 . . . a1n
... ...
ai1 ai2 . . . ain

... ...
am1 am2 . . . amn






b1j
b2j
...
bnj


 =




?1
...
?i
...
?m



−→ (AB)ij

That is,

(AB)ij =
[
ai1 ai2 . . . ain

]




b1j
b2j
...

bnj


 =

∑

k

aik bkj
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EXAMPLE:

[
2 3

1 −5

][
4

1

3

−2

6

3

]
=

[
? ?

? ? ?

]

1st row 3rd column → ( 1 , 3 ) entry

[
2 3

1 −5

][
4

1

3

−2

6

3

]
=

[
? ? ?

? ?

]

2nd row 1st column → ( 2 , 1 ) entry
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PROBLEM: Find the 2nd row of AB.

AB =




2 −5 0

−1 3 −4

6 −8 −7

−3 0 9







4 −6

7 1

3 2




PROBLEM: Compute

[
1−1 2

3 0 1

]



1 1

2 −1

1 0



[

1−1 0 0

0 0 1 1

]
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• PROPERTIES:

Let A be an (m × n) matrix, and B and C matrices of

appropriate dimensions:

◦ A(BC) = (AB)C

◦ A(B + C) = AB +AC

◦ (B + C)A = BA+ CA

◦ µ (AB) = (µA)B = A (µB) ∀ µ ∈ K

◦ ImA = A = A In where Ik is the (k × k) identity matrix

→ 4.3
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WARNING: In general, AB 6= BA

EXPANSION AXIS X ROTATION 30◦ 1st EXPANSION + 2nd ROTATION

B =

[
2 0
0 1

]
A = 1

2

[√
3 −1
1
√
3

]
AB =

[ ]

ROTATION 30o EXPANSION AXIS X 1st ROTATION + 2nd EXPANSION

A = 1
2

[√
3 −1
1
√
3

]
B =

[
2 0
0 1

]
BA =

[ ]
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WARNING: In general, AB = AC ⇒/ B = C

ROTATION π/2 PROJECTION in X 1st ROTATION + 2nd PROJECTION

B =

[
0 −1
1 0

]
A =

[
1 0
0 0

]
AB =

[ ]

REFLECTION x+y = 0 PROJECTION in X 1st REFLECTION + 2nd PROJECTION

C =

[
0 −1
−1 0

]
A =

[
1 0
0 0

]
AC =

[ ]
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WARNING: In general, AB = 0 ⇒/ A = 0 or B = 0

PROJECTION in X PROJECTION in Y 1st X-PROJECTION + 2nd Y-PROJECTION

B =

[
1 0
0 0

]
A =

[
0 0
0 1

]
AB =

[ ]

WARNING: In general, A2 = 0 ⇒/ A = 0

A =

[
1 1
−1 −1

]
, A =

[
1 1
−1 −1

]
⇒ A2 =

[ ]

• If two square matrices verify that AB = BA, we say that

A and B commute with each other.
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• The kth power of a matrix is defined:

Ak = AAA · · · A︸ ︷︷ ︸
k times

This only makes sense if A is a matrix and k is a

nonnegative integer.

• For convenience, we define A0 = I.

PROBLEM: Compute

→ 4.4
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Transpose of a Matrix

• The transpose of an (m × n) matrix A is the (n ×m)

matrix AT whose columns are the rows of A.

That is,
(AT )ij = (A)ji

EXAMPLE:

B =

[ −5 1 0

2 −3 4

]
⇒ BT =

EXAMPLE:

• A symmetric matrix verifies AT = A.

• An antisymmetric matrix verifies AT = −A.

PROBLEM: Provide examples of (anti)symmetric matrices.
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• PROPERTIES:

Let A and B be matrices of appropriate dimensions and µ ∈ K:

◦ (AT )T = A ◦ (A+B)T = AT +BT

◦ (µA)T = µ (AT ) ◦ (AB)T = BT AT

Proof: Let be A ∈ Km×n and B ∈ Kn×q

(
(AB)T

)
ij

=

PROBLEM: Prove that (ABC)T = CT BT AT .

→ 4.7

Algebra 2017/2018 4-19

Conjugate Transpose of a Matrix

• The conjugate transpose of an (m× n) matrix A is the

(n×m) matrix A∗, or AH, whose elements verify:

(A∗)ij = (A)ji.

EXAMPLE:

B =



−5 2−i
i 3

0 4


 ⇒ B∗ =

A = [ a1 a2 · · · an ] ⇒ A∗ =
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• PROPERTIES:

Let A and B be matrices of appropriate dimensions and µ ∈ K:

◦ (A∗)∗ = A

◦ (A+B)∗ = A∗ +B∗

◦ (µA)∗ = µ̄ (A∗)

◦ (AB)∗ = B∗A∗

◦ A∗ = AT if and only if A is a real matrix.

• A Hermitian matrix verifies A∗ = A.

• An antihermitian matrix verifies A∗ = −A.

PROBLEM: Provide examples of (anti)Hermitian matrices.

→ 4.8
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4.2. Inverse of a Matrix

• A square (n× n) matrix A is invertible, or nonsingular,

if there exists a matrix B such that

AB = In

• A noninvertible or singular matrix has no inverse.

EXAMPLE: This matrix is invertible: A =

[
2 5

−3 −7

]

Because C=

[
−7 −5

3 2

]
verifies AC=

[
2 5
−3 −7

] [
−7 −5

3 2

]
=

[ ]
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EXAMPLE: This matrix is invertible: A =

[
cosφ − sinφ

sinφ cosφ

]

A = ⇒ A−1 =

Thus, A−1 =

[ ]
=

[ ]

EXAMPLE: Matrix B has no inverse and is, therefore, a

singular matrix:

B = =

[ ]

→ 4.9
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Theorem 4.1. If A is an invertible (n × n) matrix, then the

equation Ax=b has the unique solution x=A−1b, ∀b∈Kn.

Proof:

◦ That x = A−1b is a solution ∀b can be checked by a mere

substitution:

◦ As it has a solution ∀b ⇒ A must have a pivot in every row.

A square

⇒
No free variables

⇒

Warning:
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Theorem 4.2. Let A and B be (n×n) matrices. Then:

AB = I ⇔ BA = I

Proof: ( AB = I ⇒ BA = I )

◦ Suppose that BA = X

◦ Let’s define M = I−X = [ m1 m2 · · · mn ].

As

That is,

◦ But now,

Leading to

Algebra 2017/2018 4-25

Theorem 4.3. If A is an invertible matrix, then A−1 is

invertible and (A−1)−1 = A.

Proof:

Theorem 4.4. If exists, the inverse of a matrix is unique.

Proof: Let A be an invertible matrix, and B a matrix such that

AB = I (that is, B = A−1). Suppose there exists C such that

AC = I (in other words, suppose that A has another inverse).
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Theorem 4.5. If A is invertible, AT is also invertible and

(AT )−1 = (A−1)T .

Theorem 4.6. If A is invertible, A∗ is also invertible and

(A∗)−1 = (A−1)∗.

Proof:

EXAMPLE:

[
1+i 1+2i

−1 −1−i

] [ −1−i −1−2i

1 1 + i

]
=

[ ]

then,

[ −1 + i 1

−1 + 2i 1− i

]−1
=

[ ]
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Theorem 4.7. If A and B are invertible (n × n) matrices,

then AB is invertible and (AB)−1 = B−1A−1.

Proof:

EXAMPLE: Consider the linear transformations:

A = ROTATE B = EXPAND .

Then,

AB = =

(in this order!) and the inverse is

(AB)−1= =
−1 −1

PROBLEM: If A, B and C are nonsingular matrices of equal

size, show that (ABC)−1 = C−1B−1A−1.
→ 4.11
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• An elementary matrix is one that is obtained by

performing one elementary row operation on an identity matrix.

EXAMPLE:

E1 =




1 0 0

0 1 0

0 0 5


 E2 =




1 0 0

0 0 1

0 1 0


 E3 =




1 0 0

−4 1 0

0 0 1




Notice: These matrices have a clear geometrical interpretation. They
correspond to
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Theorem 4.8. If an elementary row operation if performed

on an (m × n) matrix A, the resulting matrix can be written

as EA, where E is the (m×m) elementary matrix created by

performing the same operation on Im.

EXAMPLE: Consider the (3× 2) matrix A =



a d

b e

c f




◦ I ∼ E1 ( r3→ 5 r3)

E1A =




1 0 0

0 1 0

0 0 5






a d

b e

c f


 =
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◦ I ∼ E2 ( r2↔ r3)

E2A =




1 0 0

0 0 1

0 1 0






a d

b e

c f


 =







◦ I ∼ E3 ( r2→ r2 − 4r1)

E3A =




1 0 0

−4 1 0

0 0 1






a d

b e

c f


 =







A ∼ A ∼ A ∼
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Theorem 4.9. Every elementary matrix E is invertible and

its inverse E−1 is the elementary matrix corresponding to the

row operation that transforms E back into I.

EXAMPLE: The matrix E1 multiplies the 3rd row by five:

E1 =




1 0 0
0 1 0
0 0 5




Its inverse E−11 is the matrix that divides the 3rd row by five:

E−11 =







Check: E1E
−1
1 = · · · = I

PROBLEM: Find the matrices E−12 and E−13 .→ 4.12
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Theorem 4.10. An (n× n) matrix A is invertible if and only

if A is row equivalent to In. In this case, any sequence

of elementary row operations that transforms A into In also

transforms In in A−1.

Proof:

A invertible ⇔

⇒

Then, A−1 = EpEp−1 . . . E2E1 and, in fact,

→ 4.14
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An Algorithm for finding A−1

◦ Construct the matrix [A I ]

◦ Find its reduced echelon form.

◦ If this matrix has the form [ I B ] , then A−1 = B .

Otherwise, A does not have an inverse.

EXAMPLE:



0 1 2

1 0 3

4 −3 8

1 0 0

0 1 0

0 0 1




︸ ︷︷ ︸
A

︸ ︷︷ ︸
I

∼




1 0 3

0 1 2

4 −3 8

0 1 0

1 0 0

0 0 1




︸ ︷︷ ︸ ︸ ︷︷ ︸

∼
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1 0 3

0 1 2

0 −3 −4

0 1 0

1 0 0

0 −4 1




︸ ︷︷ ︸ ︸ ︷︷ ︸
I

∼




1 0 3

0 1 2

0 0 2

0 1 0

1 0 0

3 −4 1




︸ ︷︷ ︸ ︸ ︷︷ ︸

∼




1 0 3

0 1 0

0 0 2

0 1 0

−2 4 −1

3 −4 1


 ∼




1 0 3

0 1 0

0 0 1

0 1 0

−2 4 −1
3
2 −2 1

2


 ∼




1 0 0

0 1 0

0 0 1

−9
2 7 −3

2

−2 4 −1
3
2 −2 1

2




︸ ︷︷ ︸ ︸ ︷︷ ︸

⇒ A−1 =
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PROBLEM: If exists, find the inverse of the matrix

C =




1 0 −2

3 1 −2

−5 −1 9




[C I ] =







Check: C C−1 =

→ 4.16
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Theorem 4.11. (The Square Matrix Theorem)

If A ∈ Kn×n, the following statements are equivalent:
1. A is an invertible matrix.
2. There exists C ∈ Kn×n such that AC = In .
3. There exists D ∈ Kn×n such that DA = In.
4. A is row equivalent to In.
5. A has n pivots.
6. The equation Ax = 0 has only the trivial solution.
7. The columns/rows of A are linearly independent.
8. The equation Ax = b has a (unique) solution ∀b ∈ Kn.
9. The columns/rows of A span Kn.

10. The columns/rows of A form a basis of Kn
11. AT is invertible.
12. A∗ is invertible.
13. The linear transformation x→ Ax is bijective.
14. ColA = RowA = Kn
15. dim ColA = dim RowA = n
16. rank A = n
17. NulA = {0}
18. dim NulA = 0

• A transformation T : Kn −→ Kn is called

invertible if there exists a transformation S : Kn −→ Kn
such that

S(T (x)) = x

T (S(x)) = x

}
∀ x ∈ Kn.

The transformation S is called the inverse of T .

Theorem 4.12. Let T : Kn −→ Kn be a linear

transformation and A its canonical matrix. T is invertible

if and only if A is nonsingular. In this case, S(x) = A−1x.

→ 4.17
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4.3. Partitioned (or Block) Matrices

EXAMPLE:

A =




3 0 −1 5 9 −2

−5 2 4 0 −3 1

−8 −6 3 1 7 −4




A =





 =

[ ]

where

A11=

[ ]
, A12=

[ ]
, A13=

[ ]

A21=
[ ]

, A22=
[ ]

, A23=
[ ]
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EXAMPLE: Social web of 6 persons in 3 groups

Adjacency Matrix

M =




0 1 1 0 0 0
1 0 1 0 0 0
1 1 0 1 0 1
0 0 1 0 0 0
0 0 0 0 0 1
0 0 1 0 1 0




=



M11 M12 M13

M21 M22 M23

M31 M32 M33
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EXAMPLE: Jefferson High School
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EXAMPLE: Trade share matrix between countries

Algebra 2017/2018 4-42

• PROPERTIES:

◦ Addition: Matrices of equal size and identical partition can

be summed block by block:

A+B =

[
A11 A12 A13

A21 A22 A23

]
+

[
B11 B12 B13

B21 B22 B23

]

=

[ ]

◦ Scalar Multiplication:

λA = λ

[
A11 A12 A13

A21 A22 A23

]
=

[ ]
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◦ Transpose of a matrix:

A=

[
A11 A12 A13

A21 A22 A23

]
⇒ AT=




AT11 AT21

AT12 AT22

AT13 AT23


 6=







◦ Conjugate transpose of a matrix:

A=

[
A11 A12 A13

A21 A22 A23

]
⇒ A∗=




A∗11 A∗21
A∗12 A∗22
A∗13 A∗23




EXAMPLE:

A =




2 0 8

1 −5 3

0 −2 7


 ⇒ AT=




2 1 0

0 −5 −2

8 3 7
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◦ Multiplication of partitioned matrices: Two matrices A

and B of respective dimensions (m × n) and (n × p) are

conformable for block multiplication when the number of

columns of each partition of A is equal to the number of

rows of the corresponding partition of B.

AB =




2 −3 1 0 −4

1 5 −2 3 −1

0 −4 −2 7 −1







6 4

−2 1

−3 7

−1 3

5 2




=

[
A11A12

A21A22

][
B11

B21

]
=

[ ]

(Attention: )
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Concentrate on the dimensions of the blocks:

[
(3× 5)

][
(5× 2)

]
=

[
(2× 3) ( )

( ) ( )

][
( )

( )

]
=

=

[
(2× 3)(3× 2) + ( )( )

( )( ) + ( )( )

]
=

=

[
(2× 2) + ( )

( ) + ( )

]
=

[
( )

( )

]
=
[

( )
]
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EXAMPLE: Let A be a block upper triangular matrix:

A =

[
A11 A12

0 A22

]
.

Assuming that A is invertible, A11 is (p×p) and A22 is (q×q),

find a formula for A−1.

Call B = A−1. Partition B in such a way that we can write:

AB =

[
A11 A12

0 A22

][
B11 B12

B21 B22

]
=

[
I 0

0 I

]
.

The dimensions of the matrices involved are:
[

(p× p) ( )
( ) (q × q)

][
( ) ( )
( ) ( )

]
=

[
( ) ( )
( ) ( )

]
.
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The equation can be written:

[ ]
=

[
I 0

0 I

]
.

Equating components, we obtain:

(a) = I
(b) = 0

(c) = 0

(d) = I

We have to solve 4 matrix equations, which represent a

linear system of (p+ q)2 equations with (p+ q)2 unknowns.
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◦ (d)

◦ (c)

◦ (a)

◦ (b)

Obtaining,

A−1 =

[ ]
.

Algebra 2017/2018 4-49

Theorem 4.13. A block diagonal matrix is invertible if and

only if each of the diagonal blocks is invertible.

Proof: The case of two blocks follows from the above result

whenA12 = 0.




C11 0 . . . 0

0 C22 0

...
· · ·

0 0 Cnn




−1

=




0 . . . 0

0 0

...
· · ·

0 0
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Theorem 4.14. A diagonal matrix is invertible if and only if

none of its diagonal elements is zero.




a11 0 . . . 0

0 a22 0
...

· · ·
0 0 ann




−1

=







PROBLEM: Determine under what conditions the following

matrix is invertible and, in that case, find its inverse:[
Im 0

A In

]
.

→ 4.19

Algebra 2017/2018 4-51

4.4. Determinants

• Given an (m × n) matrix A, we define the minor Aij as

the ((m−1)× (n−1)) matrix obtained by removing the ith row

and the jth column of the matrix A.

EXAMPLE:

A =




1 5 0
2 4 −1
0 −2 0




• Let A be an (n× n) matrix whose entry (A)ij = aij.

We define the determinant of A as

detA = |A| =
n∑

j=1

(−1)j+1 a1j detA1j =

n∑

j=1

a1j C1j,

where Cij = (−1)i+j detAij is refered to as the ij cofactor of A.
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Theorem 4.15. The determinant of a square matrix A can

be expressed as the cofactor expansion along any row of the

matrix

detA =

n∑

j=1

(−1)k+j akj detAkj =

n∑

j=1

akj Ckj

(
along the

kth row

)

WARNING:

◦
◦
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EXAMPLE:

det




1 5 0

2 4 −1

0 −2 0




1st row:

=

2nd row:

=
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Theorem 4.16. If A is an (n×n) triangular matrix,

its determinant is the product of its diagonal entries.

det




a11 0 0 0 0

? a22 0 0 0

? ? a33 0 0

? ? ? a44 0

? ? ? ? a55




=

Algebra 2017/2018 4-55

Theorem 4.17. Let A be an (n×n) matrix.

If we obtain a matrix B,

◦ By adding to a row of A the multiple of another row,

detB = detA.

◦ By multiplying one row of A by λ,

detB = λ detA.

◦ By interchanging two rows of A,

detB = −detA.

EXAMPLE:
∣∣∣∣∣∣

−3 3−3
−2 2−1

1 0 1

∣∣∣∣∣∣
=

∣∣∣∣∣∣

∣∣∣∣∣∣
=

∣∣∣∣∣∣

∣∣∣∣∣∣
=

∣∣∣∣∣∣

∣∣∣∣∣∣
=
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Theorem 4.18. Let A be a square matrix and U an echelon

matrix obtained from A by adding multiples of rows and r row

interchanges (but without multiplying any row by a scalar!).

Then,

detA =





0 if A is not invertible

(−1)r ·
(

product of
the pivots

)
if A is invertible

Proof:
→ 4.20

Note: This would add a new statement to theorem 4.11:

19. The determinant of A is nonzero.
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WARNING: In general,

A ∼ B ⇒/ detA = detB.

Check theorem 4.17!

WARNING: In general,

det(A+B) 6= detA + detB.

EXAMPLE: If it was true, all determinants would be zero:

det

[
a b
c d

]
= det

([
a 0
0 0

]
+

[
0 b
0 0

]
+

[
0 0
c 0

]
+

[
0 0
0 d

])
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Theorem 4.19. If A and B are square matrices,

det(AB) = detA detB.

Theorem 4.20. If A is a square matrix,

|AT | = |A| and |A∗| = |A|

Proof:
◦ For elementary matrices, it’s easy to see that |E| = |ET |.
◦ If we obtain an echelon form of a matrix A:

Leading to

◦ Now, as U is a triangular matrix, |UT | = |U | and, consequently

→ 4.23
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