Chapter 4 - MATRIX ALGEBRA

4.1. Matrix Operations

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1j} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2j} & \dots & a_{2n} \\ \vdots & \vdots & & & \vdots \\ a_{i1} & a_{i2} & \dots & \boxed{a_{ij}} & \dots & a_{in} \\ \vdots & \vdots & & & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mj} & \dots & a_{mn} \end{bmatrix}$$

• The entry in the *i*th row and the *j*th column of a matrix A is referred to as $(A)_{ij}$.

EXAMPLE:

Algebra 2017/2018

4-1

• A zero matrix is a matrix, written 0, whose entries are all zero.

• A square matrix has the same number of rows than columns.

• In general $(m \neq n)$, matrices are **rectangular**.

• The (main) diagonal of a matrix, or its diagonal entries, are the entries

• A **diagonal matrix** has all its nondiagonal entries equal to zero.

$$\begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & -1 \\ -1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

• A matrix is **upper triangular** if all its elements under the diagonal are zero

 \bullet A matrix is **lower triangular** if all its elements over the diagonal are zero

 \bullet The set of all possible matrices of dimension $(m\times n)$ whose entries are real numbers is refered to as $\mathbb{R}^{m\times n}$

• The set of all possible matrices of dimension $(m\times n)$ whose entries are complex numbers is refered to as $\mathbb{C}^{m\times n}$

$\begin{bmatrix} 0 & 1 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 4 \end{bmatrix} \begin{bmatrix} 2 & 2 \\ 7 & 1 \\ 3 & -3 \end{bmatrix} \in \mathbb{K}^{3 \times 3}$

Algebra 2017/2018

4-3

• OPERATIONS:

Only for matrices with the same dimensions:

• **Equality**. Two matrices are equal if and only if their corresponding entries are equal.

 $\begin{bmatrix} 3 & -1 \\ 1 & 0 \end{bmatrix} \neq \begin{bmatrix} & & \\ & & \end{bmatrix} \neq \begin{bmatrix} & & \\ & & \end{bmatrix}$

• Addition. A matrix whose entries are the sum of the corresponding entries of the matrices.

$$\begin{bmatrix} 0 & -1 \\ 1 & 0 \\ 2 & 0 \end{bmatrix} + \begin{bmatrix} 1 & -1 \\ -1 & 0 \\ -1 & 2 \end{bmatrix} = \begin{bmatrix} 1 & -1 \\ -1 & 0 \\ -1 & 2 \end{bmatrix}$$

=

Algebra 2017/2018

 $A(B\mathbf{x}) =$

=

=

=

• Let A be an $(m \times n)$ matrix and let B be an $(n \times p)$ matrix with columns $\mathbf{b}_1, \mathbf{b}_2, \ldots, \mathbf{b}_p$. The **matrix product** of A by B is the $(m \times p)$ matrix AB whose columns are $A\mathbf{b}_1, A\mathbf{b}_2, \ldots, A\mathbf{b}_p$.

That is,

$$AB = A \begin{bmatrix} \mathbf{b}_1 \ \mathbf{b}_2 \ \dots \ \mathbf{b}_p \end{bmatrix} = \begin{bmatrix} A\mathbf{b}_1 \ A\mathbf{b}_2 \ \dots \ A\mathbf{b}_p \end{bmatrix}$$

Warning: The dimensions of the matrices involved in a product must verify

=

B

C

A

• **Scalar Multiplication**. A matrix whose entries are the corresponding entries of the matrix multiplied by the scalar.

$$2\begin{bmatrix} 0 & -1\\ 1 & 0\\ 2 & 0 \end{bmatrix} = \begin{bmatrix} \\ \\ \end{bmatrix}$$

• PROPERTIES:

Let A, B and C be matrices of $\mathbb{K}^{m \times n}$ and $\lambda, \mu \in \mathbb{K}$:

 $\circ A + B = B + A \qquad \circ \lambda (A+B) = \lambda A + \lambda B$ $\circ A + (B+C) = (A+B) + C \qquad \circ (\lambda+\mu) A = \lambda A + \mu A$ $\circ A + 0 = A \qquad \circ \lambda (\mu A) = (\lambda \mu) A$

Algebra 2017/2018

4-5

 \mathbb{K}^m

Matrix Multiplication

 \mathbb{K}^p

One wonders:

Does C exist | $C \mathbf{x} = A B \mathbf{x} \quad \forall \mathbf{x} \in \mathbb{K}^p$?

 \mathbb{K}^n

PROBLEM: What dimensions would C have?

4-7

If we write
$$B = \begin{bmatrix} \mathbf{b}_1 \ \mathbf{b}_2 \ \dots \ \mathbf{b}_p \end{bmatrix}$$
 and $\mathbf{x} = \begin{bmatrix} x_1 \\ \vdots \\ x_p \end{bmatrix}$, then:

 $B\mathbf{x} = x_1\mathbf{b}_1 + x_2\mathbf{b}_2 + \dots + x_n\mathbf{b}_n$

EXAMPLE:

Algebra 2017/2018

4-9

Row-Column Rule for computing *AB*

Consider $A \in \mathbb{K}^{m \times n}$, and $B = [\mathbf{b}_1 \dots \mathbf{b}_p] \in \mathbb{K}^{n \times p}$ such that $(A)_{ik} = a_{ik}$, and $(B)_{kj} = b_{kj}$.

$$AB = \begin{bmatrix} A\mathbf{b}_1 & \cdots & A\mathbf{b}_j & \cdots & A\mathbf{b}_p \end{bmatrix}$$

$$\overbrace{\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & & \vdots \\ a_{i1} & a_{i2} & \cdots & a_{in} \\ \vdots & & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}} \begin{bmatrix} b_{1j} \\ b_{2j} \\ \vdots \\ b_{nj} \end{bmatrix} = \begin{bmatrix} \star_1 \\ \vdots \\ \star_i \\ \vdots \\ \star_m \end{bmatrix} \longrightarrow (AB)_{ij}$$

That is,

PROBLEM: Compute

EXAMPLE:

PROBLEM: Find the 2nd row of AB.

$$AB = \begin{bmatrix} 2 & -5 & 0 \\ -1 & 3 & -4 \\ 6 & -8 & -7 \\ -3 & 0 & 9 \end{bmatrix} \begin{bmatrix} 4 & -6 \\ 7 & 1 \\ 3 & 2 \end{bmatrix}$$

• PROPERTIES:

Let A be an $(m\times n)$ matrix, and B and C matrices of appropriate dimensions:

 $\circ A(BC) = (AB)C$ $\circ A(B+C) = AB + AC$ $\circ (B+C)A = BA + CA$ $\circ \mu (AB) = (\mu A) B = A (\mu B) \quad \forall \mu \in \mathbb{K}$ $\circ \mathbb{I}_m A = A = A \mathbb{I}_n \quad \text{where } \mathbb{I}_k \text{ is the } (k \times k) \text{ identity matrix}$

 \rightarrow 4.3

Algebra 2017/2018

4-13

WARNING: In general, $AB = AC \neq A$	$\Rightarrow B = C$
ROTATION $\pi/2$ PROJECTION in X	1st ROTATION + 2nd PROJECTION
$B = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \qquad A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$	$AB = \begin{bmatrix} & & \end{bmatrix}$
REFLECTION $x + y = 0$ PROJECTION in X	1st REFLECTION + 2nd PROJECTION
$C = \begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix} \qquad A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$	$AC = \begin{bmatrix} & & \end{bmatrix}$
REFLECTION $x + y = 0$ PROJECTION in X $C = \begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix}$ $A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$	1st REFLECTION + 2nd PROJECTION $AC = \begin{bmatrix} \\ \end{bmatrix}$

Algebra 2017/2018

4-15

WARNING:	In general,	$A^{2} = 0$	\Rightarrow	A = 0	
$A = \begin{bmatrix} 1 & 1\\ -1 & -1 \end{bmatrix}$	$\bigg], \qquad A = \bigg[$	$\begin{bmatrix} 1 & 1 \\ -1 & -1 \end{bmatrix}$	\Rightarrow	$A^2 = \left[\right]$]

• If two square matrices verify that AB = BA, we say that A and B commute with each other.

• The *k*th **power** of a matrix is defined:

$$A^k = \underbrace{A \, A \, A \cdots A}_{k \text{ times}}$$

This only makes sense if A is a _____ matrix and k is a nonnegative integer.

• The transpose of an $(m \times n)$ matrix A is the $(n \times m)$

 $(A^{T})_{ii} = (A)_{ii}$

• For convenience, we define $A^0 = \mathbb{I}$.

matrix A^T whose columns are the rows of A.

 $B = \begin{bmatrix} -5 & 1 & 0 \\ 2 & -3 & 4 \end{bmatrix} \quad \Rightarrow \quad B^T =$

• A symmetric matrix verifies $A^T = A$.

• An antisymmetric matrix verifies $A^T = -A$.

PROBLEM: Provide examples of (anti)symmetric matrices.

PROBLEM: Compute

Transpose of a Matrix

 $\rightarrow 4.4$

Algebra 2017/2018

That is,

EXAMPLE:

EXAMPLE:

• PROPERTIES:

Let A and B be matrices of appropriate dimensions and $\mu \in \mathbb{K}$:

$$\circ \ (A^T)^T = A \qquad \circ \ (A + B)^T = A^T + B^T \\ \circ \ (\mu A)^T = \mu \left(A^T \right) \qquad \circ \ (AB)^T = B^T A^T$$

Proof: Let be $A \in \mathbb{K}^{m \times n}$ and $B \in \mathbb{K}^{n \times q}$

 $\left((AB)^T\right)_{ij} =$

PROBLEM: Prove that $(ABC)^T = C^T B^T A^T$.

 \rightarrow 4.7

Algebra 2017/2018

4-19

Conjugate Transpose of a Matrix

• The conjugate transpose of an $(m \times n)$ matrix A is the $(n \times m)$ matrix A^* , or A^H , whose elements verify:

$$(A^*)_{ij} = \overline{(A)_{ji}}.$$

EXAMPLE:

$$B = \begin{bmatrix} -5 & 2-i \\ i & 3 \\ 0 & 4 \end{bmatrix} \quad \Rightarrow \quad B^* =$$

$$A = [\mathbf{a}_1 \ \mathbf{a}_2 \ \cdots \ \mathbf{a}_n] \quad \Rightarrow \quad A^* =$$

Algebra 2017/2018

4-17

• PROPERTIES:

Let A and B be matrices of appropriate dimensions and $\mu \in \mathbb{K}$:

$$\circ \ (A^*)^* = A$$

 $\circ (A+B)^* = A^* + B^*$

$$\circ \ (\mu A)^* = \bar{\mu} (A^*)$$

$$\circ \ (AB)^* = B^* A^*$$

- $\circ A^* = A^T$ if and only if A is a real matrix.
- A Hermitian matrix verifies $A^* = A$.
- An antihermitian matrix verifies $A^* = -A$.

PROBLEM: Provide examples of (anti)Hermitian matrices.

 \rightarrow 4.8

Algebra 2017/2018

4-21

4.2. Inverse of a Matrix

 \bullet A square $(n\times n)$ matrix A is invertible, or nonsingular, if there exists a matrix B such that

 $AB = \mathbb{I}_n$

• A noninvertible or singular matrix has no inverse.

EXAMPLE: This matrix is invertible: $A = \begin{bmatrix} 2 & 5 \\ -3 & -7 \end{bmatrix}$

Because
$$C = \begin{bmatrix} -7 & -5 \\ 3 & 2 \end{bmatrix}$$
 verifies $AC = \begin{bmatrix} 2 & 5 \\ -3 & -7 \end{bmatrix} \begin{bmatrix} -7 & -5 \\ 3 & 2 \end{bmatrix} = \begin{bmatrix} -7 & -5 \\ -3 & -7 \end{bmatrix}$

Thus, $A^{-1} = \begin{bmatrix} & & \\ & & \end{bmatrix} = \begin{bmatrix} & & \\ & & \end{bmatrix}$

EXAMPLE: Matrix *B* has no inverse and is, therefore, a singular matrix:

Algebra 2017/2018

 $\rightarrow 4.9$

4-23

Theorem 4.1.	If A is an invertible $(n \times n)$ matrix, th	en the
equation $A\mathbf{x} = \mathbf{b}$	has the unique solution $\mathbf{x} \!=\! A^{-1} \mathbf{b}, \; \; \forall \mathbf{b}$	$\mathbf{e} \in \mathbb{K}^n$.

Proof:

 \circ That $\mathbf{x} = A^{-1} \mathbf{b}$ is a solution $\forall \, \mathbf{b}$ can be checked by a mere substitution:

 $\begin{array}{ll} \circ \mbox{ As it has a solution } \forall \mbox{ b } \Rightarrow & A \mbox{ must have a pivot in every row.} \\ A \mbox{ square } & & No \mbox{ free variables } \\ \Rightarrow & & \Rightarrow \end{array}$

Warning:

Theorem 4.2. Let A and B be $(n \times n)$ matrices. Then: $AB = \mathbb{I} \iff BA = \mathbb{I}$ **Proof:** $(AB = \mathbb{I} \Rightarrow BA = \mathbb{I})$ \circ Suppose that BA = X \circ Let's define $M = \mathbb{I} - X = [\mathbf{m}_1 \ \mathbf{m}_2 \ \cdots \ \mathbf{m}_n].$ As That is, \circ But now, Leading to

Algebra 2017/2018

4-25

Theorem 4.3. If A is an invertible matrix, then A^{-1} is invertible and $(A^{-1})^{-1} = A.$

Proof:

Theorem 4.4. If exists, the inverse of a matrix is unique.

Proof: Let A be an invertible matrix, and B a matrix such that $AB = \mathbb{I}$ (that is, $B = A^{-1}$). Suppose there exists C such that $AC = \mathbb{I}$ (in other words, suppose that A has another inverse).

Theorem 4.5. If A is invertible, A^T is also invertible and $(A^T)^{-1} = (A^{-1})^T$.

Theorem 4.6. If A is invertible, A^* is also invertible and $(A^*)^{-1} = (A^{-1})^*$.

Proof:

EXAMPLE:

$\begin{bmatrix} 1+i & 1+2i \\ -1 & -1-i \end{bmatrix} \begin{bmatrix} -1-i & -1-2i \\ 1 & 1+i \end{bmatrix} = \begin{bmatrix} 1+i & -1-2i \\ -1 & -1-i \end{bmatrix}$]
then, $\begin{bmatrix} -1+i & 1\\ -1+2i & 1-i \end{bmatrix}^{-1} = \begin{bmatrix} 1 & 1 \end{bmatrix}$]	
Algebra 2017/2018		4-27

Theorem 4.7.	If A and B a	re invertible $(n \times n)$ matrices,
then AB is inve	ertible and	$(AB)^{-1} = B^{-1} A^{-1}.$

Proof:

EXAMPLE: Consider the linear transformations:

 $A = \boxed{\texttt{ROTATE}} \qquad B = \boxed{\texttt{EXPAND}}$

Then,

(in this order!) and the inverse is

PROBLEM: If A, B and C are nonsingular matrices of equal size, show that $(ABC)^{-1} = C^{-1}B^{-1}A^{-1}$.

ightarrow 4.11

• An **elementary matrix** is one that is obtained by performing <u>one</u> elementary row operation on an identity matrix.

EXAMPLE:

Notice: These matrices have a clear geometrical interpretation. They correspond to

Algebra 2017/2018

4-29

Theorem 4.8. If an elementary row operation if performed on an $(m \times n)$ matrix A, the resulting matrix can be written as EA, where E is the $(m \times m)$ elementary matrix created by performing the same operation on \mathbb{I}_m .

EXAMPLE: Consider the
$$(3 \times 2)$$
 matrix $A = \begin{bmatrix} a & d \\ b & e \\ c & f \end{bmatrix}$

$$\circ \ \mathbb{I} \sim E_1 \quad (r_3 \to 5 r_3)$$

$$E_1 A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 5 \end{bmatrix} \begin{bmatrix} a & d \\ b & e \\ c & f \end{bmatrix} = \begin{bmatrix} \\ \\ \end{bmatrix}$$

$$\circ \ \mathbb{I} \sim E_2 \quad (r_2 \leftrightarrow r_3)$$

$$E_2 A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} a & d \\ b & e \\ c & f \end{bmatrix} = \begin{bmatrix} \\ \\ \end{bmatrix}$$

$$\circ \ \mathbb{I} \sim E_3 \quad (r_2 \to r_2 - 4r_1)$$

$$E_3 A = \begin{bmatrix} 1 & 0 & 0 \\ -4 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} a & d \\ b & e \\ c & f \end{bmatrix} = \begin{bmatrix} \\ \\ \end{bmatrix}$$

Algebra 2017/2018

4-31

Theorem 4.9. Every elementary matrix E is invertible and its inverse E^{-1} is the elementary matrix corresponding to the row operation that transforms E back into \mathbb{I} .

EXAMPLE: The matrix E_1 multiplies the 3rd row by five:

$$E_1 = \left[\begin{array}{rrr} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 5 \end{array} \right]$$

Its inverse E_1^{-1} is the matrix that <u>divides</u> the 3rd row by five:

$$E_1^{-1} = \left[\right]$$

Check: $E_1 E_1^{-1} = \cdots = \mathbb{I}$

 \rightarrow 4.12 **PROBLEM:** Find the matrices E_2^{-1} and E_3^{-1} .

Theorem 4.10. An $(n \times n)$ matrix A is invertible if and only if A is row equivalent to \mathbb{I}_n . In this case, any sequence of elementary row operations that transforms A into \mathbb{I}_n also transforms \mathbb{I}_n in A^{-1} .

Proof:

 $A \text{ invertible } \Leftrightarrow$

 \Rightarrow

Then, $A^{-1} = E_p E_{p-1} \dots E_2 E_1$ and, in fact,

 $\rightarrow 4.14$

Algebra 2017/2018

4-33

An Algorithm for finding A^{-1}

- Construct the matrix $[A \ \mathbb{I}]$
- $\circ\,$ Find its reduced echelon form.
- \circ If this matrix has the form $[\,{\mathbb I}\,\,B\,]$, then $\ A^{-1}=B$. Otherwise, A does not have an inverse.

EXAMPLE:

Algebra 2017/2018

4-35

PROBLEM: If exists, find the inverse of the matrix

Check: $C C^{-1} =$

Theorem 4.11. (The Square Matrix Theorem) If $A \in \mathbb{K}^{n \times n}$, the following statements are equivalent: 1. A is an invertible matrix. 2. There exists $C \in \mathbb{K}^{n \times n}$ such that $AC = \mathbb{I}_n$. 3. There exists $D \in \mathbb{K}^{n \times n}$ such that $DA = \mathbb{I}_n$. 4. A is row equivalent to \mathbb{I}_n . 5. A has n pivots. 6. The equation $A\mathbf{x} = \mathbf{0}$ has only the trivial solution. 7. The columns/rows of A are linearly independent. 8. The equation $A\mathbf{x} = \mathbf{b}$ has a (unique) solution $\forall \mathbf{b} \in \mathbb{K}^n$. 9. The columns/rows of A span \mathbb{K}^n . 10. The columns/rows of A form a basis of \mathbb{K}^n 11. A^T is invertible. 12. A^* is invertible. 13. The linear transformation $\mathbf{x} \rightarrow A\mathbf{x}$ is bijective. 14. Col $A = \operatorname{Row} A = \mathbb{K}^n$ 15. dim Col $A = \dim \operatorname{Row} A = n$ 16. rank A = n17. Nul $A = \{0\}$ 18. dim Nul A = 0

• A transformation $T: \mathbb{K}^n \longrightarrow \mathbb{K}^n$ is called **invertible** if there exists a transformation $S: \mathbb{K}^n \longrightarrow \mathbb{K}^n$ such that

$$\begin{cases} S(T(\mathbf{x})) = \mathbf{x} \\ T(S(\mathbf{x})) = \mathbf{x} \end{cases} \quad \forall \ \mathbf{x} \in \mathbb{K}^n.$$

The transformation S is called the **inverse** of T.

Theorem 4.12. Let $T : \mathbb{K}^n \longrightarrow \mathbb{K}^n$ be a linear transformation and A its canonical matrix. T is invertible if and only if A is nonsingular. In this case, $S(\mathbf{x}) = A^{-1}\mathbf{x}$.

Algebra 2017/2018

4.3. Partitioned (or Block) Matrices

EXAMPLE: Social web of 6 persons in 3 groups

EXAMPLE: Jefferson High School

Algebra 2017/2018

4-41

EXAMPLE: Trade share matrix between countries

FIG. 3 (color online). The trade share matrix $S_{ij} = M_{ij}/(\sum_{m=1}^{N} M_{im} + \sum_{n=1}^{N} M_{jn})$ after hierarchical clustering between countries in 2007. We can see clearly several modules:

• PROPERTIES:

• Addition: Matrices of equal size and identical partition can be summed block by block:

$$A + B = \begin{bmatrix} A_{11} & A_{12} & A_{13} \\ A_{21} & A_{22} & A_{23} \end{bmatrix} + \begin{bmatrix} B_{11} & B_{12} & B_{13} \\ B_{21} & B_{22} & B_{23} \end{bmatrix}$$
$$= \begin{bmatrix} & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$$

• Scalar Multiplication:

$$\lambda A = \lambda \begin{bmatrix} A_{11} & A_{12} & A_{13} \\ A_{21} & A_{22} & A_{23} \end{bmatrix} = \begin{bmatrix} & & \\ & & \end{bmatrix}$$

Algebra 2017/2018

4-43

• Transpose of a matrix:

$$A = \begin{bmatrix} A_{11} & A_{12} & A_{13} \\ A_{21} & A_{22} & A_{23} \end{bmatrix} \Rightarrow A^{T} = \begin{bmatrix} A_{11}^{T} & A_{21}^{T} \\ A_{12}^{T} & A_{22}^{T} \\ A_{13}^{T} & A_{23}^{T} \end{bmatrix} \neq \begin{bmatrix} A_{11}^{T} & A_{22}^{T} \\ A_{13}^{T} & A_{23}^{T} \end{bmatrix}$$

• Conjugate transpose of a matrix:

$$A = \begin{bmatrix} A_{11} & A_{12} & A_{13} \\ A_{21} & A_{22} & A_{23} \end{bmatrix} \Rightarrow A^* = \begin{bmatrix} A_{11}^* & A_{21}^* \\ A_{12}^* & A_{22}^* \\ A_{13}^* & A_{23}^* \end{bmatrix}$$

EXAMPLE:

$$A = \begin{bmatrix} 2 & 0 & 8 \\ 1 & -5 & 3 \\ 0 & -2 & 7 \end{bmatrix} \implies A^{T} = \begin{bmatrix} 2 & 1 & 0 \\ 0 & -5 & -2 \\ \hline 8 & 3 & 7 \end{bmatrix}$$

perturł

presen

the ev

• **Multiplication of partitioned matrices:** Two matrices Aand B of respective dimensions $(m \times n)$ and $(n \times p)$ are conformable for block multiplication when the number of columns of each partition of A is equal to the number of rows of the corresponding partition of B.

$$AB = \begin{bmatrix} 2 - 3 & 1 & | & 0 - 4 \\ 1 & 5 - 2 & 3 - 1 \\ \hline 0 - 4 - 2 & | & 7 - 1 \end{bmatrix} \begin{bmatrix} 6 & 4 \\ -2 & 1 \\ -3 & 7 \\ \hline -1 & 3 \\ 5 & 2 \end{bmatrix}$$
$$= \begin{bmatrix} A_{11}A_{12} \\ A_{21}A_{22} \end{bmatrix} \begin{bmatrix} B_{11} \\ B_{21} \end{bmatrix} = \begin{bmatrix} & & \\ & & \\ \end{bmatrix}$$

(Attention:

Algebra 2017/2018

Concentrate on the dimensions of the blocks:

$$\left[\begin{array}{cc} (3 \times 5) \end{array} \right] \left[\begin{array}{cc} (5 \times 2) \end{array} \right] = \left[\begin{array}{cc} (2 \times 3) & (& &) \\ (&) & (& &) \end{array} \right] \left[\begin{array}{cc} (& &) \\ (& &) \end{array} \right] =$$

 $= \begin{bmatrix} (2 \times 3)(3 \times 2) + (&)(&) \\ (&)(&) + (&)(&) \end{bmatrix} =$

$$= \begin{bmatrix} (2 \times 2) + (&) \\ (&) + (&) \end{bmatrix} = \begin{bmatrix} (&) \\ (&) \end{bmatrix} = \begin{bmatrix} (&) \\ (&) \end{bmatrix}$$

EXAMPLE: Let A be a block upper triangular matrix:

$$A = \begin{bmatrix} A_{11} & A_{12} \\ 0 & A_{22} \end{bmatrix}.$$

Assuming that A is invertible, A_{11} is $(p \times p)$ and A_{22} is $(q \times q)$, find a formula for A^{-1} .

Call
$$B = A^{-1}$$
. Partition B in such a way that we can write:

$$AB = \begin{bmatrix} A_{11} & A_{12} \\ 0 & A_{22} \end{bmatrix} \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix} = \begin{bmatrix} \mathbb{I} & 0 \\ 0 & \mathbb{I} \end{bmatrix}.$$

The dimensions of the matrices involved are:

$$\begin{bmatrix} (p \times p) (\) \\ (\) (q \times q) \end{bmatrix} \begin{bmatrix} (\) (\) \\ (\) (\) \end{bmatrix} = \begin{bmatrix} (\) (\) \\ (\) (\) \end{bmatrix}$$

Algebra 2017/2018

4-47

The equation can be written:

·]	Γ	\mathbb{I}	0]
	= [0	\mathbb{I}] .

Equating components, we obtain:

(a)	=	\mathbb{I}
(b)	=	0
(c)	=	0
(d)	=	\mathbb{I}

We have to solve 4 matrix equations, which represent a linear system of $(p+q)^2$ equations with $(p+q)^2$ unknowns.

4-45

• (d)

• (a)

• (b)

Theorem 4.13. A block diagonal matrix is invertible if and only if each of the diagonal blocks is invertible.

Proof: The case of two blocks follows from the above result when $A_{12} = 0$.

Theorem 4.14. A diagonal matrix is invertible if and only if none of its diagonal elements is zero.

PROBLEM: Determine under what conditions the following matrix is invertible and, in that case, find its inverse:

$$\begin{bmatrix} \mathbb{I}_m & 0 \\ A & \mathbb{I}_n \end{bmatrix}.$$

ightarrow 4.19

Algebra 2017/2018

4-51

4.4. Determinants

• Given an $(m \times n)$ matrix A, we define the **minor** A_{ij} as the $((m-1) \times (n-1))$ matrix obtained by removing the *i*th row and the *j*th column of the matrix A.

EXAMPLE: [1]

 $A = \begin{bmatrix} 1 & 5 & 0 \\ 2 & 4 & -1 \\ 0 & -2 & 0 \end{bmatrix}$

• Let A be an $(n \times n)$ matrix whose entry $(A)_{ij} = a_{ij}$. We define the **determinant** of A as

$$\det A = |A| = \sum_{j=1}^{n} (-1)^{j+1} a_{1j} \det A_{1j} = \sum_{j=1}^{n} a_{1j} C_{1j},$$

where $C_{ij} = (-1)^{i+j} \det A_{ij}$ is referred to as the *ij* cofactor of A.

Theorem 4.15. The determinant of a square matrix A can be expressed as the cofactor expansion along <u>any</u> row of the matrix

$$\det A = \sum_{j=1}^{n} (-1)^{k+j} a_{kj} \det A_{kj} = \sum_{j=1}^{n} a_{kj} C_{kj} \quad \begin{pmatrix} \text{along the} \\ k\text{th row} \end{pmatrix}$$

Algebra 2017/2018

4-53

EXAMPLE:

1st row:

=

2nd row:

=

Theorem 4.16. If A is an $(n \times n)$ triangular matrix, its determinant is the product of its diagonal entries.

$$\det \begin{bmatrix} a_{11} & 0 & 0 & 0 & 0 \\ \star & a_{22} & 0 & 0 & 0 \\ \star & \star & a_{33} & 0 & 0 \\ \star & \star & \star & a_{44} & 0 \\ \star & \star & \star & \star & a_{55} \end{bmatrix} =$$

Algebra 2017/2018

4-55

Theorem 4.17. Let A be an $(n \times n)$ matrix.
If we obtain a matrix B ,
\circ By adding to a row of A the multiple of another row,
$\det B = \det A.$
\circ By multiplying <u>one</u> row of A by λ ,
$\det B = \lambda \det A.$
\circ By interchanging two rows of A ,
$\det B = -\det A.$

EXAMPLE:

Theorem 4.18. Let A be a square matrix and U an echelon matrix obtained from A by adding multiples of rows and r row interchanges (but without multiplying any row by a scalar!). Then,

 $\det A = \begin{cases} 0 & \text{if } A \text{ is not invertible} \\ (-1)^r \cdot \begin{pmatrix} \text{product of} \\ \text{the pivots} \end{pmatrix} & \text{if } A \text{ is invertible} \end{cases}$

Proof:

 \rightarrow 4.20

19. The determinant of A is nonzero.

Algebra 2017/2018

4-57

WARNING: In general,

 $A \sim B \quad \not\Rightarrow \quad \det A = \det B.$

Check theorem 4.17!

WARNING: In general,

 $\det(A+B) \neq \det A + \det B.$

EXAMPLE: If it was true,	all	determinants	would	be	zero:
--------------------------	-----	--------------	-------	----	-------

$$\det \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \det \left(\begin{bmatrix} a & 0 \\ 0 & 0 \end{bmatrix} + \begin{bmatrix} 0 & b \\ 0 & 0 \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ c & 0 \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 0 & d \end{bmatrix} \right)$$

Theorem 4.19. If A and B are square matrices, det(AB) = det A det B.

Theorem 4.20. If A is a square matrix, $|A^T| = |A| \quad \text{and} \quad |A^*| = \overline{|A|}$

Proof:

• For elementary matrices, it's easy to see that $|E| = |E^T|$.

 \circ If we obtain an echelon form of a matrix A:

Leading to

• Now, as U is a triangular matrix, $|U^T| = |U|$ and, consequently

ightarrow 4.23

Algebra 2017/2018

4-59