Cálculo I Bloque I: Números, funciones, límites y continuidad.

Rafael Bravo de la Parra

U. D. Matemáticas, Universidad de Alcalá

Curso 2019-20

- 1 TEMA 1: Conjuntos de números: operaciones y representación.
- 2 TEMA 2: Funciones: operaciones y representación. Funciones elementales.
- 3 TEMA 3: Límites de funciones. Funciones continuas

- **1** TEMA 1: Conjuntos de números: operaciones y representación.
 - Números enteros, racionales y reales.
 - Números complejos.

Números enteros, racionales y reales.

Números naturales

$$\mathbb{N} = \{0, 1, 2, 3, \ldots\}$$

Números enteros

$$\mathbb{Z} = \{\ldots, -3, -2, -1, 0, 1, 2, 3, \ldots\}$$

Números racionales

$$\mathbb{Q} = \left\{ \frac{m}{n} : m \in \mathbb{Z}, n \in \mathbb{Z} - \{0\} \right\}$$

Desarrollos decimales finitos o infinitos periódicos.

Números reales

 \mathbb{R}

Todo tipo de desarrollos decimales.

Los desarrollos decimales infinitos no periódicos corresponden a los números irracionales, los reales que no son racionales: $\mathbb{I} = \mathbb{R} \setminus \mathbb{Q}$.

Índice

- **1** TEMA 1: Conjuntos de números: operaciones y representación.
 - Números enteros, racionales y reales.
 - Números complejos.

Forma binómica y operaciones.

Números complejos

$$\mathbb{C} = \{ z = a + bi : a, b \in \mathbb{R} \}$$

- **1** Unidad imaginaria i, $i^2 = -1$
- **2** Parte real: $\Re z = a \in \mathbb{R}$
- **3** Parte imaginaria: $\mathcal{I}mz = b \in \mathbb{R}$

Suma y producto de números complejos

$$z_1 = a_1 + b_1 i y z_2 = a_2 + b_2 i$$

SUMA:
$$z_1 + z_2 = (a_1 + a_2) + (b_1 + b_2)i$$

PRODUCTO:
$$z_1 \cdot z_2 = (a_1 \cdot a_2 - b_1 \cdot b_2) + (a_1 \cdot b_2 + b_1 \cdot a_2)i$$

 $\mathbb{R} \subset \mathbb{C}$ y las operaciones de \mathbb{C} extienden a las de \mathbb{R} .

Complejo conjugado

El **complejo conjugado** de z = a + bi es $\bar{z} = a - bi$.

- 1 La suma de los conjugados es el conjugado de la suma: $\overline{z}_1 + \overline{z}_2 = \overline{z_1 + z_2}$.
- 2 El producto de los conjugados es el conjugado del producto: $\bar{z}_1 \cdot \bar{z}_2 = \overline{z_1 \cdot z_2}$.
- **3** Producto de un número por su conjugado: $z \cdot \overline{z} = a^2 + b^2 \in \mathbb{R}$.

Cociente de números complejos

$$z_1 = a_1 + b_1 i$$
 y $z_2 = a_2 + b_2 i$

$$\frac{z_1}{z_2} = \frac{z_1 \cdot \bar{z}_2}{z_2 \cdot \bar{z}_2} = \frac{1}{a_2^2 + b_2^2} (z_1 \cdot \bar{z}_2) = \frac{a_1 \cdot a_2 + b_1 \cdot b_2}{a_2^2 + b_2^2} + \frac{-a_1 \cdot b_2 + b_1 \cdot a_2}{a_2^2 + b_2^2} i$$

El **inverso** de un número complejo $z = a + bi \neq 0$:

$$\frac{1}{z} = \frac{1}{a^2 + b^2} \overline{z} = \frac{a}{a^2 + b^2} - \frac{b}{a^2 + b^2} i$$

Módulo y argumento de un número complejo

Módulo de un número complejo

El **módulo** del número complejo z = a + bi es el número positivo (o 0 si z = 0): $|z| = \sqrt{a^2 + b^2}$

Se tiene por tanto $z \cdot \bar{z} = |z|^2$.

Argumento de un número complejo

El **argumento** de un número complejo z = a + bi es el ángulo que comienza en el semieje real positivo y termina en el segmento que une el origen con el punto (a, b). Se representa por arg z.

Se considera también argumento a cualquier otro ángulo que se diferencie del anterior en un múltiplo de 2π .

El valor del argumento entre 0 y 2π se obtiene mediante la fórmula:

$$\arg z = \left\{ \begin{array}{ll} \arctan(b/a) & \text{si } a > 0 \text{ y } b \geq 0 \\ \pi/2 & \text{si } a = 0 \text{ y } b > 0 \\ \arctan(b/a) + \pi & \text{si } a < 0 \\ 3\pi/2 & \text{si } a = 0 \text{ y } b < 0 \\ \arctan(b/a) + 2\pi & \text{si } a > 0 \text{ y } b < 0 \end{array} \right.$$

Forma polar

Forma polar de un número complejo

Sea el número complejo z=a+bi, llamamos r=|z| a su módulo y $\theta=\arg z$ a su argumento:

$$a = r\cos\theta$$
$$b = r\sin\theta$$

y así

$$z = r(\cos\theta + i\,\sin\theta)$$

Producto y cociente en forma polar

Sean $z_1 = a_1 + b_1 i = r_1(\cos \theta_1 + i \sin \theta_1)$ y $z_2 = a_2 + b_2 i = r_2(\cos \theta_2 + i \sin \theta_2)$

$$z_1 \cdot z_2 = r_1 r_2 (\cos(\theta_1 + \theta_2) + i \sin(\theta_1 + \theta_2))$$

es decir

- El módulo del producto es el producto de los módulos: $|z_1 \cdot z_2| = |z_1| \cdot |z_2|$
- El argumento del producto es la suma de los argumentos:

$$\arg(z_1 \cdot z_2) = \arg(z_1) + \arg(z_2)$$

Si $z_2 \neq 0$

$$\frac{z_1}{z_2} = \frac{r_1}{r_2} \left(\cos(\theta_1 - \theta_2) + i \sin(\theta_1 - \theta_2) \right)$$

Potencias y raices enteras de un número complejo

Potencia entera de un número complejo

Sea el número complejo $z = a + bi = r(\cos \theta + i \sin \theta)$ y $n \in \mathbb{N}$:

$$z^{n} = (a+bi)^{n} = r^{n}(\cos n\theta + i \sin n\theta)$$

Raíz entera de un número complejo

Sea el número complejo $z = a + bi = r(\cos \theta + i \sin \theta)$ y $n \in \mathbb{N}$:

Si $z \neq 0$ entonces z tiene n raíces n-ésimas distintas w_k , $(w_k)^n = z$.

Todas las raíces n-ésimas tienen el mismo módulo: $|w_k| = \sqrt[n]{|z|}$ y argumentos:

$$\arg(w_k) = \frac{\theta}{n} + \frac{2\pi}{n}k \operatorname{con} k = 0, 1, 2, \dots, n-1.$$

Teorema (Teorema Fundamental del Álgebra)

Un polinomio de grado n con coeficientes complejos tiene n raices (contando las repeticiones).

Fórmula de Euler

Fórmula de Euler

$$e^{i\theta} = \cos\theta + i \sin\theta$$

Así

$$z = a + bi = r(\cos\theta + i \sin\theta) = re^{i\theta}$$

Operaciones

$$z_1 = r_1 e^{i \theta_1}$$
 y $z_2 = r_2 e^{i \theta_2}$

Producto:

$$z_1 \cdot z_2 = r_1 e^{i\theta_1} r_2 e^{i\theta_2} = r_1 r_2 e^{i(\theta_1 + \theta_2)}$$

Cociente:

$$z_1/z_2 = r_1 e^{i\theta_1}/(r_2 e^{i\theta_2}) = r_1/r_2 e^{i(\theta_1-\theta_2)}$$

Potencia:

$$z^n = \left(r e^{i \theta}\right)^n = r^n e^{i n\theta}$$

Índice

- TEMA 2: Funciones: operaciones y representación. Funciones elementales.

- TEMA 2: Funciones: operaciones y representación. Funciones elementales.
 - Definiciones y gráficas.
 - Operaciones: suma, producto y cociente. Funciones racionales.
 - Funciones trascendentes: trigonométricas y exponenciales.
 - Composición de funciones: función inversa, logaritmos y trigonométricas inversas.

Tema1 Tema2 Tema3

Definición

Una **función** f de un conjunto A en un cojunto B es una regla que asigna a cada elemento x de A exactamente un elemento, llamado **imagen** de x y denotado f(x), del conjunto B.

- Notación: $f: A \longrightarrow B$.
- El conjunto A se denomina **dominio** de f.
- Si una función f está expresada mediante una fórmula y no se especifica su dominio, éste es el mayor subconjunto de números reales x para los que f(x) es un número real.

$$dom f = \{x \in \mathbb{R} : f(x) \in \mathbb{R}\}\$$

- Dos funciones expresadas mediante la misma fórmula si tienen distintos dominios se consideran funciones distintas.
- El conjunto de todos los elementos $y \in B$ para los que existe un $x \in \text{dom } f$ tal que y = f(x) se denomina **rango**, o imagen, de f.

rango
$$f = \{ y \in B : \text{existe } x \in \text{dom } f \text{ con } y = f(x) \}$$

El rango de f no tiene por qué coincidir con B.

• A x se le denomina variable **independiente** y a y variable **dependiente**.

Tema1 Tema2 Tema3 Gráficas Operaciones Trascendentes Composición

Gráficas de funciones

Definición

En el sistema de coordenadas cartesianas o rectangulares del plano, la **gráfica** de una función f es el conjunto de puntos de coordenadas (x, f(x)) donde x pertenece al dominio de f.

$$\operatorname{graf} f = \{(x, f(x)) \in \mathbb{R}^2 : x \in \operatorname{dom} f\}$$

- Se puede decir que y = f(x) es la ecuación de la gráfica de f.
- Si tenemos una curva en el plano, ésta puede ser la gráfica de una función si y sólo si cada recta vertical (paralela al eje *y*) corta a la curva como mucho en un punto.
- El dominio de una función es la proyección ortogonal de su gráfica sobre el eje x.
- El rango de una función es la proyección ortogonal de su gráfica sobre el eje y.

- TEMA 2: Funciones: operaciones y representación. Funciones elementales.
 - Definiciones y gráficas.
 - Operaciones: suma, producto y cociente. Funciones racionales.
 - Funciones trascendentes: trigonométricas y exponenciales.
 - Composición de funciones: función inversa, logaritmos y trigonométricas inversas.

Tema1 Tema2 Tema3 Gráficas Operaciones Trascendentes Composición

Operaciones aritméticas

Definición

Sif y g son dos funciones, entonces la suma f + g, la diferencia f - g, el producto fg y el cociente f/g se definen como sigue:

$$\begin{array}{ll} (f+g)(x)=f(x)+g(x) & con\ dom\ (f+g)=dom\ f\cap dom\ g\\ (f-g)(x)=f(x)-g(x) & con\ dom\ (f-g)=dom\ f\cap dom\ g\\ (fg)(x)=f(x)g(x) & con\ dom\ (fg)=dom\ f\cap dom\ g\\ (f/g)(x)=f(x)/g(x) & con\ dom\ (f/g)=\{x\in dom\ f\cap dom\ g:g(x)\neq 0\} \end{array}$$

Funciones polinomiales y racionales

• Una función polinomial tiene la forma:

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_2 x^2 + a_1 x + a_0$$

donde los coeficientes a_i (i = 0, 1, ..., n) son números reales.

El dominio de f es todo $\mathbb{R} = (-\infty, \infty)$.

• Una función racional se define mediante el cociente de dos polinomios p(x) y q(x):

 $f(x) = \frac{p(x)}{q(x)}$

El dominio de f es $\{x \in \mathbb{R} : q(x) \neq 0\}$, todos los números reales salvo las raíces del polinomio denominador.

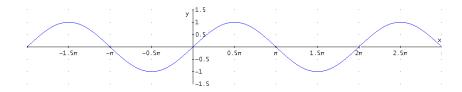
Índice

- TEMA 2: Funciones: operaciones y representación. Funciones elementales.
 - Definiciones y gráficas.
 - Operaciones: suma, producto y cociente. Funciones racionales.
 - Funciones trascendentes: trigonométricas y exponenciales.
 - Composición de funciones: función inversa, logaritmos y trigonométricas inversas.

Funciones trigonométricas

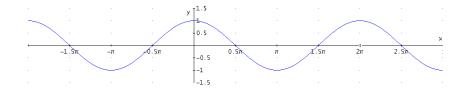
Función seno: $f(x) = \sin x$

- dom $f = \mathbb{R}$ y rango f = [-1, 1].
- f(x) se define como el seno de un ángulo de x radianes.
- f es una función impar, f(-x) = -f(x). La gráfica es simétrica respecto del origen.
- f es una función periódica de periodo 2π , $f(x+2\pi)=f(x)$.



Función coseno: $f(x) = \cos x$

- dom $f = \mathbb{R}$ y rango f = [-1, 1].
- f(x) se define como el coseno de un ángulo de x radianes.
- f es una función par, f(-x) = f(x). La gráfica es simétrica respecto del eje y.
- f es una función periódica de periodo 2π , $f(x+2\pi)=f(x)$.



Tema1 Tema2 Tema3 Gráficas Operaciones Trascendentes Composición

Funciones trigonométricas

Función tangente: $f(x) = \tan x$

- dom $f = \mathbb{R} \{\frac{\pi}{2} + k\pi : k \in \mathbb{Z}\}$ y rango $f = \mathbb{R}$.
- f(x) se define como la tangente de un ángulo de x radianes.
- f es una **función impar**, f(-x) = -f(x). La gráfica es simétrica respecto del origen.
- f es una función periódica de periodo π , $f(x + \pi) = f(x)$.

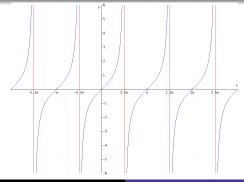


Tabla de valores conocidos del seno, coseno y tangente

х	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{3\pi}{4}$	$\frac{5\pi}{6}$	π
$\operatorname{sen} x$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
$\cos x$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	$-\frac{1}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{3}}{2}$	-1
$\tan x$	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	No existe	$-\sqrt{3}$	-1	$-\frac{\sqrt{3}}{3}$	0

Funciones exponenciales

Sea $b \in \mathbb{R}$, b > 0 y $b \neq 1$ entonces una función exponencial tiene la forma

$$f(x) = b^x$$

Al número b se le denomina **base** y x es el **exponente**.

Propiedades de las potencias

Suponemos a > 0, b > 0 y $x, x_1, x_2 \in \mathbb{R}$:

$$i) \quad b^{x_1} \cdot b^{x_2} = b^{x_1 + x_2}$$

$$\frac{b^{x_1}}{b^{x_2}} = b^{x_1 - x_2}$$

$$(b^{x_1})^{x_2} = b^{x_1 \cdot x_2}$$

$$iv) \quad \frac{1}{b^x} = b^{-1}$$

i)
$$b^{x_1} \cdot b^{x_2} = b^{x_1 + x_2}$$
 ii) $\frac{b^{x_1}}{b^{x_2}} = b^{x_1 - x_2}$ iii) $(b^{x_1})^{x_2} = b^{x_1 \cdot x_2}$
iv) $\frac{1}{b^x} = b^{-x}$ v) $(a \cdot b)^x = a^x \cdot b^x$ vi) $(\frac{a}{b})^x = \frac{a^x}{b^x}$

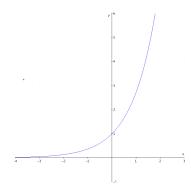
$$\left(\frac{a}{b}\right)^x = \frac{a^2}{b^2}$$

Funciones exponenciales

Propiedades de la función exponencial $f(x) = b^x \operatorname{con} b > 1$

- dom $f = \mathbb{R}$ y rango $f = (0, \infty)$ $(b^x > 0)$.
- $b^0 = 1$.
- f es una función creciente y convexa.

Gráfica de $f(x) = e^x$

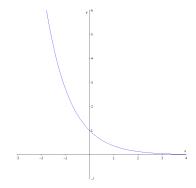


Funciones exponenciales

Propiedades de la función exponencial $f(x) = b^x \text{ con } 0 < b < 1$

- dom $f = \mathbb{R}$ y rango $f = (0, \infty)$ $(b^x > 0)$.
- $b^0 = 1$.
- f es una función decreciente y convexa.

Gráfica de
$$f(x) = e^{-x}$$



La función exponencial

El número e

e es un número irracional que se puede definir como

$$e = \lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^x = \lim_{x \to 0} \left(1 + x \right)^{\frac{1}{x}}$$

e = 2,718281828459045235360287471352662497757...

Definición

La función exponencial natural o simplemente la función exponencial es la que tiene por base el número e:

$$f(x) = e^x = \exp(x)$$

Índice

- TEMA 2: Funciones: operaciones y representación. Funciones elementales.
 - Definiciones y gráficas.
 - Operaciones: suma, producto y cociente. Funciones racionales.
 - Funciones trascendentes: trigonométricas y exponenciales.
 - Composición de funciones: función inversa, logaritmos y trigonométricas inversas.

Composición de Funciones

Definición (Composición de funciones)

Dadas dos funciones f y g, la composición de f y g, denotada $g \circ f$, es la función definida por

$$(g \circ f)(x) = g(f(x))$$

y su dominio es dom $(g \circ f) = \{x \in dom f : f(x) \in dom g\}.$

Propiedades de la composición

1 La composición de funciones es asociativa:

$$h \circ (g \circ f) = (h \circ g) \circ f$$

2 La composición de funciones en general no es conmutativa:

$$g \circ f \neq f \circ g$$

③ La composición de funciones tiene un elemento neutro, la **función identidad** e(x) = x:

$$e \circ f = f \circ e = f$$

① Dada una función f a veces existe su elemento inverso respecto de la composición que se denota f^{-1} :

$$(f^{-1} \circ f)(x) = (f \circ f^{-1})(x) = e(x) = x$$

y se denomina función inversa.

Tema1 Tema2 Tema3 Gráficas Operaciones Trascendentes Composición

Función Inversa

Definición (Función uno a uno)

Se dice que una función f es **uno a uno** si cada elemento en el rango de f se asocia con exactamente un elemento de su dominio.

Esto es equivalente a cualquiera de las siguientes afirmaciones:

- $Si x_1, x_2 \in dom f \ y \ x_1 \neq x_2 \ entonces \ f(x_1) \neq f(x_2)$.
- Si $x_1, x_2 \in domf \ y f(x_1) = f(x_2) \ entonces \ x_1 = x_2$.
- Toda recta horizontal, y = c, que corta a la gráfica de f lo hace en un único punto.

Definición (Función inversa)

Dada una función f uno a uno con dominio A y rango B. La **inversa** de f es la función denotada f^{-1} que tiene dominio B y rango A para la cual

$$f(f^{-1}(x)) = x$$
 para todo $x \in B$

$$f^{-1}(f(x)) = x$$
 para todo $x \in A$

Cálculo de la inversa

- ① Comprobar que f es uno a uno en su dominio. Si f no es uno a uno se puede elegir una parte del dominio de manera que la nueva función si lo sea y mantenga el rango de f.
- ② El dominio y el rango de la función inversa f^{-1} son respectivamente el rango y el dominio de f.
- **3** Obtener $f^{-1}(x)$ equivale a despejar x en la ecuación y = f(x) obteniéndose $x = f^{-1}(y)$ y a continuación cambiar el nombre a la variable, cambiar y por x.

Tema1 Tema2 Tema3 Gráficas Operaciones Trascendentes Composición

Funciones logarítmicas

Inversas de las funciones exponenciales

Para b>0 y $b\neq 1$ tenemos una función exponencial de la forma $y=b^x$, que sabemos que es uno a uno de manera que tiene inversa, f(y), que debe cumplir $y=b^{f(y)}$ y también $f(b^x)=x$.

Definición (Función logarítmica)

La función logarítmica de base b > 0 y $b \ne 1$ se define:

$$f: (0,\infty) \longrightarrow \mathbb{R}$$

$$x \longrightarrow \log_b x$$

donde $y = \log_b x$ es el exponente al que hay que elevar la base b para obtener x $(b^y = x)$.

Propiedades de los logaritmos

Suponemos b > 0 y $b \neq 1, x, x_1, x_2 \in \mathbb{R}_+, c \in \mathbb{R}$ y $n \in \mathbb{N}$:

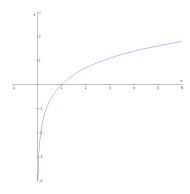
i)
$$\log_b(x_1 \cdot x_2) = \log_b x_1 + \log_b x_2$$
 ii) $\log_b\left(\frac{x_1}{x_2}\right) = \log_b x_1 - \log_b x_2$

iii)
$$\log_b x^c = c \log_b x$$
 iv) $\log_b \sqrt[n]{x} = \frac{1}{n} \log_b x$

Propiedades de la función logaritmo $f(x) = \log_b x \operatorname{con} b > 1$

- dom $f = (0, \infty)$ y rango $f = \mathbb{R}$.
- $\log_b 1 = 0$.
- f es una función creciente y cóncava.

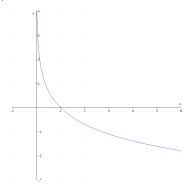
Gráfica de $f(x) = \ln x$



Propiedades de la función logaritmo $f(x) = \log_b x \text{ con } 0 < b < 1$

- dom $f = (0, \infty)$ y rango $f = \mathbb{R}$.
- $\log_b 1 = 0$.
- f es una función decreciente y convexa.

Gráfica de
$$f(x) = \log_{1/e} x = -\ln x$$



Tema1 Tema2 Tema3 Gráficas Operaciones Trascendentes Composición

Logaritmos naturales

Definición

El **logaritmo natural o neperiano** es el que tiene por base el número e y que denotaremos por $\ln x$.

Propiedades del logaritmo natural

1 La función $f(x) = \ln x$ es la inversa de la función exponencial:

$$\ln(e^x) = x \ y \ e^{\ln x} = x$$

- ② $\ln 1 = 0$, $\ln x < 0$ si $x \in (0, 1)$ y $\ln x > 0$ si $x \in (1, \infty)$.
- 3 Cualquier logaritmo se puede calcular a partir del logaritmo neperiano:

$$\log_b x = \frac{\ln x}{\ln b}$$

Cualquier exponencial se puede escribir a partir del número e y el logaritmo neperiano:

$$b^x = e^{(\ln b)x}$$

3 Cualquier función potencial $f(x) = x^{\alpha}$, x > 0 y $\alpha \in \mathbb{R}$, se puede definir a partir de la exponencial y el logaritmo neperiano:

$$x^{\alpha} = e^{\ln(x^{\alpha})} = e^{\alpha \ln x}$$

Funciones trigonométricas inversas

Ninguna de las funciones trigonométricas tiene inversa en todo su dominio, pero restrigiéndolo adecuadamente sí.

Función arcoseno: $f(x) = \arcsin x = \sin^{-1} x$

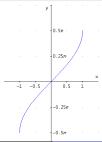
Es la inversa de $y = \operatorname{sen} x$ con dominio $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$:

$$f: [-1,1] \longrightarrow [-\frac{\pi}{2}, \frac{\pi}{2}]$$

$$x \longrightarrow \arcsin x$$

donde arcsen x es el único ángulo en radianes del intervalo $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ cuyo seno es x.

- $\operatorname{sen}(\operatorname{arcsen} x) = x \operatorname{para} \operatorname{todo} x \in [-1, 1].$
- $\arcsin(\sin x) = x \text{ para todo } x \in [-\frac{\pi}{2}, \frac{\pi}{2}].$



Función arcocoseno: $f(x) = \arccos x = \cos^{-1} x$

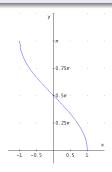
Es la inversa de $y = \cos x$ con dominio $[0, \pi]$:

$$f: \begin{bmatrix} -1,1 \end{bmatrix} \longrightarrow \begin{bmatrix} 0,\pi \end{bmatrix}$$

$$x \longrightarrow \arccos x$$

donde $\arccos x$ es el único ángulo en radianes del intervalo $[0, \pi]$ cuyo coseno es x.

- $arccos(cos x) = x para todo x \in [0, \pi].$



Función arcotangente: $f(x) = \tan x = \tan^{-1} x$

Es la inversa de $y = \tan x$ con dominio $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$:

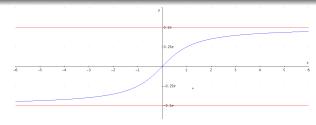
$$f: \mathbb{R} \longrightarrow (-\frac{\pi}{2}, \frac{\pi}{2})$$

$$x \longrightarrow a \tan x$$

donde atan x es el único ángulo en radianes del intervalo $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ cuya tangente es x.

- $\tan(\tan x) = x$ para todo $x \in \mathbb{R}$.
- atan $(\tan x) = x$ para todo $x \in (-\frac{\pi}{2}, \frac{\pi}{2})$.

La gráfica y = a tan x de la función arcotangente tiene una asíntota horizontal $y = \frac{\pi}{2}$ cuando $x \to +\infty$ y otra distinta $y = -\frac{\pi}{2}$ cuando $x \to -\infty$.



- 3 TEMA 3: Límites de funciones. Funciones continuas

- TEMA 3: Límites de funciones. Funciones continuas
 - Límites de una función en un punto
 - Límites e infinito.
 - Definiciones rigurosas de límite
 - Funciones continuas.
 - Teorema del valor intermedio
 - Teorema de los valores extremos

Definición

Sea f una función definida en un entorno de $a \in \mathbb{R}$ aunque no necesariamente en a y $L \in \mathbb{R}$. El **límite de** f(x) **cuando** x **tiende a** a **es** L si podemos acercar tanto como queramos los valores de f(x) a L sin más que coger x suficientemente cerca de a pero distinto de a. Se denota:

$$\lim_{x \to a} f(x) = L$$

Definición (Límites laterales)

El límite de f(x) cuando x tiende a a por la izquierda (derecha) es L si podemos acercar tanto como queramos los valores de f(x) a L sin más que coger x < a(x > a) suficientemente cerca de a pero distinto de a. Se denota:

$$\lim_{x \to a^{-}} f(x) = L \left(\lim_{x \to a^{+}} f(x) = L \right)$$

Teorema

Sea f una función definida en un entorno de $a \in \mathbb{R}$ aunque no necesariamente en a y $L \in \mathbb{R}$. Se tiene que

$$\lim_{x \to a} f(x) = L \text{ si y solo si } \lim_{x \to a^{-}} f(x) = L = \lim_{x \to a^{+}} f(x).$$

Teorema (Límites y suma y producto)

Si existen los límites $\lim_{x\to a} f(x)$ y $\lim_{x\to a} g(x)$ entonces

- $\bullet \lim_{x \to a} (f \pm g)(x) = \lim_{x \to a} f(x) \pm \lim_{x \to a} g(x).$

Teorema (Límites y cociente)

Si existen los límites $\lim_{x\to a} f(x)$ y $\lim_{x\to a} g(x)$ y éste último es distinto de 0 entonces

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)}.$$

Teorema (Límites y composición)

Si $\lim_{x \to a} f(x) = b y \lim_{x \to b} g(x) = L$, entonces

$$\lim_{x \to a} g(f(x)) = L.$$

Se puede sustituir a en todos los enunciados por a^- o a^+ .

Límites y operaciones

Límites y cociente: denominador con límite 0

$$\lim_{x \to a} \frac{f(x)}{g(x)}$$
 no existe.

② Si $\lim_{x \to a} f(x) = 0$ y $\lim_{x \to a} g(x) = 0$ entonces no sabemos que ocurre con

$$\lim_{x \to a} \frac{f(x)}{g(x)}$$

Esta situación se denomina INDETERMINACIÓN y significa que saber que $\lim_{x\to a} f(x) = 0$ y $\lim_{x\to a} g(x) = 0$ no es suficiente para calcular $\lim_{x\to a} f(x)/g(x)$.

Se puede sustituir a por a^- o a^+ .

Más teoremas sobre límites

Teorema

Sean $a, c \in \mathbb{R}$ *. Entonces:*

- $\bullet \lim_{x \to a} c = c.$
- $\lim_{x \to a} x = a.$

Corolario

Si f(x) es un polinomio o una función racional y $a \in dom f$ entonces:

$$\lim_{x \to a} f(x) = f(a).$$

Teorema

Si f(x) es una función potencial (x^{α}) , trigonométrica (sen x, cos x, tan x,...), exponencial (b^x) , logarítmica (log $_b x$) o trigonométrica inversa (arcsen x, arccos x, atan x,...) y $a \in domf$ entonces:

$$\lim_{x \to a} f(x) = f(a).$$

Teorema

Sean f y g dos funciones definidas y que verifican $\mathbf{f}(\mathbf{x}) \leq \mathbf{g}(\mathbf{x})$ en un entorno de a. Si existen $\lim_{x\to a} f(x)$ y $\lim_{x\to a} g(x)$ entonces

$$\lim_{x \to a} f(x) \le \lim_{x \to a} g(x)$$

Corolario (teorema de compresión o del sandwich)

Sean f, g y h tres funciones definidas y que verifican en un entorno de a

$$\mathbf{f}(\mathbf{x}) \leq \mathbf{h}(\mathbf{x}) \leq \mathbf{g}(\mathbf{x}).$$

Si existen $\lim_{x\to a} f(x)$ y $\lim_{x\to a} g(x)$ y son iguales entonces existe $\lim_{x\to a} h(x)$ y se verifica

$$\lim_{x \to a} f(x) = \lim_{x \to a} h(x) = \lim_{x \to a} g(x).$$

Se puede sustituir a en los dos enunciados por a^- (o a^+) y en ese caso la desigualdad basta que se cumpla en un entorno a la izquierda (o a la derecha).

- TEMA 3: Límites de funciones. Funciones continuas
 - Límites de una función en un punto
 - Límites e infinito.
 - Definiciones rigurosas de límite
 - Funciones continuas.
 - Teorema del valor intermedio
 - Teorema de los valores extremos

Definición

El **límite de** f(x) **cuando** x **tiende a** a **es** $+\infty$ si podemos hacer tan grandes como queramos los valores de f(x) sin más que coger x suficientemente cerca de a pero distinto de a. Se denota:

$$\lim_{x \to a} f(x) = +\infty$$

Definición

El **límite de** f(x) **cuando** x **tiende a** a **es** $-\infty$ si podemos hacer negativos y tan grandes en valor absoluto como queramos los valores de f(x) sin más que coger x suficientemente cerca de a pero distinto de a. Se denota:

$$\lim_{x \to a} f(x) = -\infty$$

Análogamente se definirían los límites infinitos laterales.

Definición (Asíntota vertical)

Si el límite de f(x) cuando x tiende a a (o a^+ o a^-) es $+\infty$ (o $-\infty$) se dice que la recta x = a es una **asíntota vertical** de la curva y = f(x).

Suma y límites infinitos

$$\lim_{x \to a} f(x) = \mathbf{A} \text{ y } \lim_{x \to a} g(x) = \mathbf{B} \text{ son } L, +\infty \text{ o } -\infty \text{ entonces } \lim_{x \to a} (f+g)(x) = \mathbf{C}.$$

B\A	L	$+\infty$	$-\infty$
$+\infty$	$+\infty$	$+\infty$	IND.
$-\infty$	$-\infty$	IND.	$-\infty$

Producto y límites infinitos

$$\lim_{x \to a} f(x) = \mathbf{A} \text{ y } \lim_{x \to a} g(x) = \mathbf{B} \text{ son } L, +\infty \text{ o } -\infty \text{ entonces } \lim_{x \to a} (f \cdot g)(x) = \mathbf{C}.$$

$\mathbf{B} \setminus \mathbf{A}$	0	$\mathbf{L} \neq 0$	$+\infty$	$-\infty$
$+\infty$	IND.	$signo(\mathbf{L}) \infty$	$+\infty$	$-\infty$
$-\infty$	IND.	$-signo(\mathbf{L}) \infty$	$-\infty$	$+\infty$

Cociente y límites infinitos

$$\lim_{x \to a} f(x) = \mathbf{A} \text{ y } \lim_{x \to a} g(x) = \mathbf{B} \text{ son } L, +\infty \text{ o } -\infty \text{ entonces } \lim_{x \to a} \frac{f(x)}{g(x)} = \mathbf{C}.$$

B\A	L	$+\infty$	$-\infty$
$+\infty$	0	IND.	IND.
$-\infty$	0	IND.	IND.

Límites y cociente: denominador con límite 0

Si $\lim_{x \to a} f(x) = L \neq 0$ y $\lim_{x \to a} g(x) = 0$ entonces

0

 $\lim_{x \to a} \frac{f(x)}{g(x)}$ no existe.

2

$$\lim_{x \to a} \left| \frac{f(x)}{g(x)} \right| = +\infty$$

 $\lim_{x\to a} f(x)/g(x)$ puede ser $+\infty, -\infty$ o tomar cada vez valores más grandes sin un signo determinado.

Se puede sustituir a por a^- o a^+ .

Límite en un punto Infinito Límites $\varepsilon - \delta$ Funciones continuas

Límites en el infinito

Definición

El **límite de** f(x) **cuando** x **tiende a** $+\infty$ **es** L si podemos acercar tanto como queramos los valores de f(x) a L sin más que coger x suficientemente grande. Se denota

$$\lim_{x \to +\infty} f(x) = L$$

Definición

El **límite de** f(x) **cuando** x **tiende a** $-\infty$ **es** L si podemos acercar tanto como queramos los valores de f(x) a L sin más que coger x negativo suficientemente grande en valor absoluto. Se denota

$$\lim_{x \to -\infty} f(x) = L$$

Definición (Asíntota horizontal)

Si el límite de f(x) cuando x tiende $a + \infty$, o $a - \infty$, es L se dice que la recta y = Les una asíntota horizontal de la curva y = f(x).

Análogamente se definirían los límites infinitos en $+\infty$ y $-\infty$.

Teorema (Límites y suma y producto)

Si existen los límites $\lim_{x\to a} f(x)$ y $\lim_{x\to a} g(x)$ entonces

- $\bullet \lim_{x \to a} (f \pm g)(x) = \lim_{x \to a} f(x) \pm \lim_{x \to a} g(x).$

a puede sustituirse por $+\infty$ o $-\infty$.

Teorema (Límites y cociente)

Si existen los límites $\lim_{x\to a} f(x)$ y $\lim_{x\to a} g(x)$ y éste último es distinto de 0 entonces

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)}.$$

a puede sustituirse por $+\infty$ o $-\infty$.

Teorema (Límites y composición)

Si
$$\lim_{x \to a} f(x) = b y \lim_{x \to b} g(x) = L$$
, entonces

$$\lim_{x \to a} g(f(x)) = L.$$

a, b y L pueden sustituirse cada una por $+\infty$ o $-\infty$.

Límites infinitos en el infinito y operaciones

En los resultados siguientes a puede sustituirse por $+\infty$ o $-\infty$.

Suma y límites infinitos

$$\lim_{x \to a} f(x) = \mathbf{A} \text{ y } \lim_{x \to a} g(x) = \mathbf{B} \text{ son } L, +\infty \text{ o } -\infty \text{ entonces } \lim_{x \to a} (f+g)(x) = \mathbf{C}.$$

A 74				
B\A	L	+∞	$-\infty$	
+∞	+∞	+∞	IND.	
$-\infty$	$-\infty$	IND.	$-\infty$	

Producto y límites infinitos

$$\lim_{x \to a} f(x) = \mathbf{A} \text{ y } \lim_{x \to a} g(x) = \mathbf{B} \text{ son } L, +\infty \text{ o } -\infty \text{ entonces } \lim_{x \to a} (f \cdot g)(x) = \mathbf{C}.$$

B\A	0	$\mathbf{L} \neq 0$	+∞	$-\infty$
+∞	IND.	$signo(\mathbf{L}) \infty$	+∞	$-\infty$
$-\infty$	IND.	$-signo(\mathbf{L}) \infty$	$-\infty$	$+\infty$

Cociente y límites infinitos

$$\lim_{x \to a} f(x) = \mathbf{A} \text{ y } \lim_{x \to a} g(x) = \mathbf{B} \text{ son } L, +\infty \text{ o } -\infty \text{ entonces } \lim_{x \to a} \frac{f(x)}{g(x)} = \mathbf{C}.$$

B\A	L	+∞	$-\infty$
+∞	0	IND.	IND.
$-\infty$	0	IND.	IND.

Límites y cociente: denominador con límite 0

Si
$$\lim_{x \to a} f(x) = L \neq 0$$
 y $\lim_{x \to a} g(x) = 0$ entonces $\lim_{x \to a} \frac{f(x)}{g(x)}$ no existe y $\lim_{x \to a} \left| \frac{f(x)}{g(x)} \right| = +\infty$.

- TEMA 3: Límites de funciones. Funciones continuas
 - Límites de una función en un punto
 - Límites e infinito.
 - Definiciones rigurosas de límite
 - Funciones continuas.
 - Teorema del valor intermedio
 - Teorema de los valores extremos

Límites en un punto

Definición (Límite de una función en un punto)

Sea f una función definida para todo x tal que $0 < |x - a| < \eta$, siendo η un número positivo.

El límite de f(x) cuando x tiende a a es L si para cada $\varepsilon > 0$ existe un $\delta > 0$ tal que $si \ 0 < |x - a| < \delta \ entonces \ |f(x) - L| < \varepsilon.$

Definición (Límite por la izquierda de una función en un punto)

Sea f una función definida para todo x tal que $0 < a - x < \eta$, siendo η un número positivo.

El límite de f(x) cuando x tiende a a por la izquierda es L si para cada $\varepsilon > 0$ existe un $\delta > 0$ tal que si $0 < a - x < \delta$ entonces $|f(x) - L| < \varepsilon$.

Definición (Límite por la derecha de una función en un punto)

Sea f una función definida para todo x tal que $0 < x - a < \eta$, siendo η un número positivo.

El límite de f(x) cuando x tiende a a por la derecha es L si para cada $\varepsilon > 0$ existe un $\delta > 0$ tal que si $0 < x - a < \delta$ entonces $|f(x) - L| < \varepsilon$.

Límites infinitos y en el infinito.

Definición (Límites infinitos)

Sea f una función definida para todo x tal que $0 < |x - a| < \eta$, siendo η un número positivo.

El límite de
$$f(x)$$
 cuando x tiende a a $es + \infty$ $(-\infty)$ si para cada $M > 0$ existe un $\delta > 0$ tal que si $0 < |x - a| < \delta$ entonces $f(x) > M$ $(f(x) < -M)$.

Análogamente se definirían los límites infinitos laterales.

Definición (Límites en el infinito)

Sea f una función definida para todo x > K (x < -K), siendo K un número positivo.

El límite de
$$f(x)$$
 cuando x tiende $a + \infty$ $(-\infty)$ es L si para cada $\varepsilon > 0$ existe un $M > 0$ tal que si $x > M$ $(x < -M)$ entonces $|f(x) - L| < \varepsilon$.

Definición (Límites infinitos en el infinito)

Sea f una función definida para todo x > K (x < -K), siendo K un número positivo.

El límite de
$$f(x)$$
 cuando x tiende $a + \infty$ $(-\infty)$ es $+\infty$ $(-\infty)$ si para cada $N > 0$ existe un $M > 0$ tal que si $x > M$ $(x < -M)$ entonces $f(x) > N$ $(f(x) < -N)$.

- TEMA 3: Límites de funciones. Funciones continuas
 - Límites de una función en un punto
 - Límites e infinito.
 - Definiciones rigurosas de límite
 - Funciones continuas.
 - Teorema del valor intermedio
 - Teorema de los valores extremos

Funciones continuas

Definición

Una función f(x) es **continua en un punto** a si

- $\mathbf{0}$ $a \in dom f$
- 2 Existe $\lim_{x \to a} f(x)$
- $\lim_{x \to a} f(x) = f(a).$

Si alguna de estas condiciones no se cumple se dice que f(x) es discontinua en el punto a.

Una función f(x) es continua en un punto a por la derecha (izquierda) si $\lim_{x \to a^+} f(x) = f(a)$

 $(\lim_{x \to a^{-}} f(x) = f(a)).$

Una función f(x) es continua en el intervalo abierto (a,b) si es continua en todo punto $x \in (a,b)$.

Una función f(x) es continua en el intervalo cerrado [a,b] si es continua en todo punto $x \in (a, b)$, continua por la derecha en a y por la izquierda en b.

Teorema

Las funciones polinómicas, racionales, raíces $(\sqrt[n]{x})$, potenciales (x^{α}) , trigonométricas (sen x, cos x, tan x,...), exponenciales (b^x), logarítmicas ($\log_b x$) y trigonométricas inversas (arcsen x, arccos x, atan x,...) son continuas en todo su dominio.

Teorema

Sean f(x) y g(x) funciones continuas en el punto a. Entonces también son continuas en a las funciones (f+g)(x), $(f \cdot g)(x)$ y, si $g(a) \neq 0$, (f/g)(x).

Teorema

Si la función f(x) es continua en el punto a y la función g(x) es continua en el punto f(a) entonces la función $(g \circ f)(x)$ es continua en en el punto a, es decir, la composición de funciones continuas es una función continua.

Teorema

Si f(x) es continua y uno a uno su función inversa $f^{-1}(x)$ también es continua.

- TEMA 3: Límites de funciones. Funciones continuas
 - Límites de una función en un punto
 - Límites e infinito.
 - Definiciones rigurosas de límite
 - Funciones continuas.
 - Teorema del valor intermedio
 - Teorema de los valores extremos

Teorema

Sea f(x) una función continua en el intervalo cerrado [a,b] y sea γ cualquier número estrictamente entre f(a) y f(b). Entonces existe $c \in (a,b)$ tal que $f(c) = \gamma$.

Corolario

Sea f(x) una función continua en el intervalo cerrado [a,b] tal que $f(a) \cdot f(b) < 0$ (f(a) y f(b) tienen distinto signo). Entonces existe $c \in (a,b)$ tal que f(c) = 0.

Corolario

Sea f(x) una función continua en el intervalo abierto (a,b) tal que $f(x) \neq 0$ para todo $x \in (a,b)$. Entonces f(x) conserva el signo en (a,b) (o f(x) > 0 para todo $x \in (a,b)$ o f(x) < 0 para todo $x \in (a,b)$).

Ecuación f(x) = 0 con f función continua.

- Si $f(a) \cdot f(b) < 0$ sabemos que existe $c \in (a, b)$ que es raiz de la ecuación. Para aproximarse a ella se puede utilizar el método iterativo denominado Método de Bisección:
- Hacemos $u_1 = a$ y $v_1 = b$ y procedemos a la bisección de $[u_1, v_1]$: $m_1 = (u_1 + v_1)/2$ es el punto medio. Si $f(m_1) = 0$ hemos encontrado la raiz, si no o en $[u_1, m_1]$ o en $[m_1, v_1]$ habrá cambio de signo de f y denominamos $[u_2, v_2]$ a éste intervalo.
- Paso n Procedemos a la bisección de $[u_n, v_n]$: $m_n = (u_n + v_n)/2$ es el punto medio. Si $f(m_n) = 0$ hemos encontrado la raiz, si no o en $[u_n, m_n]$ o en $[m_n, v_n]$ habrá cambio de signo de f y denominamos $[u_{n+1}, v_{n+1}]$ a éste intervalo.

Al cabo de *n* iteraciones sabemos que:

$$|m_n-c|\leq \frac{b-a}{2^n}$$

Ecuación $e^{-x} = \ln x$, en [1, 2]. $f(x) = e^{-x} - \ln x.$ $\alpha = 1,3097995858041504776...$

i	u _i	v _i	m _i	$f(u_i)$	$f(m_i)$	$f(v_i)$
1	1	2	1,5	0,367879441	-0,182334948	-0,557811897
2	1	1,5	1,25	0,367879441	0,063361246	-0,182334948
3	1,25	1,5	1,375	0,063361246	-0,065614135	-0,182334948
4	1,25	1,375	1,3125	0,063361246	-0,002787367	-0,065614135
5	1,25	1,3125	1,28125	0,063361246	0,029853807	-0,002787367
6	1,28125	1,3125	1,296875	0,029853807	0,013427263	-0,002787367
7	1,3046875	1,3125	1,30859375	0,005293741	0,00124667	-0,002787367
8	1,30859375	1,3125	1,310546875	0,00124667	-0,000771973	-0,002787367
9	1,30859375	1,310546875	1,309570313	0,00124667	0,000236942	-0,000771973
10	1,309570313	1,310546875	1,310058594	0,000236942	-0,000267617	-0,000771973
11	1,309570313	1,310058594	1,309814453	0,000236942	-1,5363E-05	-0,000267617
12	1,309570313	1,309814453	1,309692383	0,000236942	0,000110783	-1,5363E-05
13	1,309692383	1,309814453	1,309753418	0,000110783	4,77084E-05	-1,5363E-05

- TEMA 3: Límites de funciones. Funciones continuas
 - Límites de una función en un punto
 - Límites e infinito.
 - Definiciones rigurosas de límite
 - Funciones continuas.
 - Teorema del valor intermedio
 - Teorema de los valores extremos

Acotación y extremos de un conjunto y de una función.

Definición (Cota superior e inferior. Conjunto acotado)

Sea S un subconjunto no vacio de los números reales, $S \subset \mathbb{R}$ y $S \neq \emptyset$.

- Se dice que $M \in \mathbb{R}$ es una **cota superior** de S si para todo $s \in S$ se verifica que $s \leq M$.
 - Si existe la cota superior se dice que S está acotado superiormente.
- Se dice que $m \in \mathbb{R}$ es una **cota inferior** de S si para todo $s \in S$ se verifica que s > m. Si existe la cota inferior se dice que S está acotado inferiormente.
- Se dice que S está acotado si está acotado superior e inferiormente.

Definición (Máximo y mínimo.)

Sea $S \subset \mathbb{R}$, $S \neq \emptyset$.

- Se dice que $s_0 \in S$ es el **máximo** de S, y se denota $s_0 = \max S$, si para todo $s \in S$ se verifica que $s \leq s_0$.
- Se dice que $s_0 \in S$ es el **mínimo** de S, y se denota $s_0 = \min S$, si para todo $s \in S$ se verifica que $s > s_0$.

Definición (Función acotada y extremos absolutos de una función.)

 Se dice que una función f está acotada (superior o inferiormente) si su rango es un conjunto acotado (superior o inferiormente).

Existen $M, m \in \mathbb{R}$ tal que $m \le f(x) \le M$ para todo $x \in dom f$.

• Se denominan máximo y mínimo absolutos (extremos absolutos) de una función al máximo y el mínimo de su rango.

Se dice que función f alcanza su máximo absoluto (mínimo absoluto) en $c \in dom f \ si \ f(x) < f(c) \ (f(c) < f(x)) \ para \ todo \ x \in dom f.$

Teorema (de los valores extremos (o de Weierstrass))

Si la función f(x) es continua en un intervalo cerrado [a,b] entonces alcanza sus extremos absolutos, es decir, existen $c, d \in [a, b]$ tales que

$$f(c) \le f(x) \le f(d)$$
 para todo $x \in [a, b]$.

Corolario

Si la función f(x) es continua en un intervalo cerrado [a,b] existen $c,d \in [a,b]$ tales que f([a,b]) = [f(c), f(d)].