
“When a flow is both frictionless and irrotational, 
 pleasant things happen.”   

 

We can treat external flows around bodies as invicid (i.e. 

frictionless) and irrotational (i.e. the fluid particles are not 

rotating).  This is because the viscous effects are limited to a 

thin layer next to the body called the boundary layer.. 
 
We can define a potential function(x z t) , as a continuous 

function that satisfies the basic laws of fluid mechanics: 

conservation of mass and momentum, assuming 

incompressible, inviscid and irrotational flow. 
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The Stream Function 
 

Is a clever device which allows us to wipe out the continuity 
equation and solve the momentum equation directly for the 
single variable. 

 
Continuity equation 
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The most common application is incompressible flow in  
the xy plane 
 
 
 
This equation is satisfied identically if a function ψ(x, y)  
is defined such that  and the above equation becomes 
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The Eq. shows that this new function   must be defined 

such that 



 
The vorticity, or curl V, is an interesting function 
 
 
 
 

Potential Flow Theory 

 

Where  

One important application is inviscid irrotational flow in the 

xy plane, where  ωZ =0 and the above Eq.  is reduced to 

This is the second-order Laplace equation  for which 

many solutions and analytical techniques are known. 

Also, boundary conditions like Eq. reduce to 



 
Geometric Interpretation of  Stream Function 

The fancy mathematics above would serve by itself to make the stream 

function immortal and always useful to engineers. Even better, though,   

stream function has  a beautiful geometric interpretation: Lines of constant 

stream function are streamlines of the flow. This can be shown as follows. 

The  definition of a streamline  in two-dimensional flow is 
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By the definition of stream function we obtain 



 
Geometric Interpretation of  Stream Function 
 

Having found a given solution ψ(x, y), we can plot lines of constant   to give the 

streamlines of the flow. There is also a physical interpretation which relates  to 

volume flow. We can compute the volume flow dQ through an element ds of 

control surface of unit depth 
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Geometric Interpretation of  Stream Function 
 

Sign convention for flow in terms of change in stream function: (a) flow to the 

right if  ψU is greater; (b) flow to the left if  ψL is greater. 
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Thus the change in  ψ across the element is numerically equal to the volume 

flow through the element. The volume flow between any two points in the 

flow field is equal to the change in stream function between those points: 



 
Geometric Interpretation of  Stream Function 
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Example: If a stream function exists for the velocity field of 

find it, plot it, and interpret it. 



 
Geometric Interpretation of  Stream Function 
 
 
 

Potential Flow Theory 

 



 
Frictionless Irrotational Flow 
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When a flow is both frictionless and irrotational, pleasant things happen. First, the 
momentum equation reduces to Euler’s equation 

Second, there is a great simplification in the acceleration term. 

A beautiful vector identity exists for the second term 



 
Frictionless Irrotational Flow 
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Divide by ρ, and rearrange on the left-hand side. The entire equation into an arbitrary vector 
displacement dr: 

Nothing works right unless we can get rid of the third term. We want 

This will be true under various conditions: 
 
1. V is zero; trivial, no flow (hydrostatics). 
2.  ξ is zero; irrotational flow. 
3. dr is perpendicular to (ξ  x V) ; this is rather specialized and rare. 
4. dr is parallel to V; we integrate along a streamline  



 
Frictionless Irrotational Flow 
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The last condition is the common assumption. If we integrate along a streamline in 
frictionless compressible flow and take, for convenience, g=´-gk, 

Except for the first term, these are exact differentials. Integrate between any two points 
1 and 2 along the streamline: 

The above equation is Bernoulli’s equation for frictionless unsteady flow along a 
streamline. For incompressible steady flow, it reduces to 



 
Velocity Potential 
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Irrotationality gives rise to a scalar function  similar and complementary to the stream 
Function.  A vector with zero curl must be the gradient of a scalar function 

where φ =φ (x, y, z, t) is called the velocity potential function. Knowledge of φ thus 
immediately gives the velocity components 

Note that φ, unlike the stream function, is fully three-dimensional and not limited 
to two coordinates. It reduces a velocity problem with three unknowns u, v, and w to 
a single unknown potential φ. The velocity potential also simplifies the unsteady Bernoulli 
equation because if φ exists, we obtain 



 
Velocity Potential 
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Unsteady Bernoulli Equation then becomes a relation between φ and ρ 

This is the unsteady irrotational Bernoulli equation. It is very important in the 
analysis of accelerating flow fields 

Orthogonality of Streamlines and Potential Lines  

If a flow is both irrotational and described by only two coordinates,  ψ and φ both exist 
and the streamlines and potential lines are everywhere mutually perpendicular except 
at a stagnation point. For example, for incompressible flow in the xy plane, we would have 

Cauchy-Riemann equations 



 
Velocity Potential 
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Generation of Rotationality 
 
We have discussed Bernoulli’s equation under different circumstances. Such reinforcement is useful,  
This equation is probably the most widely used equation in fluid mechanics.  
 

• It requires frictionless flow with no shaft work or heat transfer between sections 1 and 2.  
• The flow may or may not be irrotational, 

 
The only remaining question is: When is a flow irrotational?  
In other words, when does a flow have negligible angular velocity?  
 
The exact analysis of fluid rotationality under arbitrary conditions is a topic for advanced study,  
 



 
Velocity Potential 
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Generation of Rotationality 
 
A fluid flow which is initially irrotational may become rotational if 
 
• High viscous forces induced by jets, wakes, or solid boundaries. In this situation Bernoulli’s 

equation will not be valid in such viscous regions.  
 

• There are entropy gradients caused by curved shock waves. 
 

• There are density gradients caused by stratification (uneven heating) rather than by 
pressure gradients. 
 

• There are significant noninertial effects such as the earth’s rotation (the Coriolis 
acceleration). 
 
 



 
Velocity Potential 
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Generation of Rotationality 
 
A fluid flow which is initially irrotational may become rotational if 
 

 
 

Typical flow patterns illustrating viscous regions patched into nearly frictionless regions: 
(a) low subsonic flow past a body(U << a); frictionless, irrotational potential flow outside the 
boundary layer (Bernoulli and Laplace equations valid) 



 
Velocity Potential 
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Generation of Rotationality 
 
A fluid flow which is initially irrotational may become rotational if 
 

 
 

Supersonic flow past a body (U > a); frictionless, rotational flow outside the boundary 
layer (Bernoulli equation valid, potential flow invalid). the flow downstream is rotational due to 
entropy gradients. Euler’s equation  can be used in this frictionless region but not potential 
theory. 



 
Velocity Potential 
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Generation of Rotationality 
 
A fluid flow which is initially irrotational may become rotational if 
 

 
 

• Internal flows, such as pipes and ducts, are mostly viscous, and the wall layers grow 
to meet in the core of the duct. Bernoulli’s equation does not hold in such flows unless 
it is modified for viscous losses. 
 
• External flows, such as a body immersed in a stream, are partly viscous and partly 
inviscid, the two regions being patched together at the edge of the shear layer or boundary 
layer. 



 
Velocity Potential 
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Generation of Rotationality 
 
A fluid flow which is initially irrotational may become rotational if 
 

 
 

The approach stream is irrotational; i.e., the curl of a constant is zero, but viscous stresses 
create a rotational shear layer beside and downstream of the body.   
 
The shear layer is laminar, or smooth, near the front of the body and turbulent, or disorderly, 
toward the rear. A separated, region usually occurs near the trailing edge, followed by an 
unsteady turbulent wake extending far downstream.  
 
Some sort of laminar or turbulent viscous theory must be applied to these viscous regions; 
they are then patched onto the outer flow, which is frictionless and irrotational.  
 
If the stream Mach number is less than about 0.3, the fluid flow is consider incompressible. 



 
Velocity Potential 
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If a velocity potential exists for the velocity field 

find it, plot it, and interpret it. 



 
Velocity Potential 
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We expected trouble at the stagnation point, and there is no general rule for 
determining the behavior of the lines at that point. 
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Plane Polar Coordinates 
 

Many solutions  are conveniently expressed in polar coordinates (r, θ).  Both the velocity 
components and the differential relations for ψ and  φ are then changed, as follows: 

Laplace’s equation takes the form 

Exactly the same equation holds for the polar-coordinate form of ψ (r, θ). 


