AUTOMATA THEORY AND FORMAL LANGUAGES 2015-16

UNIT 5 - PART 1: REGULAR LANGUAGES

David Griol Barres

Regular languages. Bibliography

- Enrique Alfonseca Cubero, Manuel Alfonseca Cubero, Roberto Moriyón Salomón. Teoría de Autómatas y Lenguajes Formales. McGraw-Hill (2007). Chapters 3 and 7.
- John E. Hopcroft, Rajeev Motwani, Jeffrey D.Ullman. Introduction to Automata Theory, Languages, and Computation (3rd edition). Ed, Pearson Addison Wesley. Sects. 2.1-2.2; Sects. 2.3-2.8; Chap. 4; Sects. 3-1-3.7
- Manuel Alfonseca, Justo Sancho, Miguel Martínez Orga. Teoría de Lenguajes, Gramáticas y Autómatas. Publicaciones R.A.E.C. 1997 Capítulos 4,5,y 8

OUTLINE

PART 1:

- Finite Automata and Type-3 Grammars
- Finite Automata associated to a Type-3 grammar (G3 \rightarrow FA)
- Type-3 Grammar associated to a FA (FA \rightarrow G3)

PART 2:

- Regular expressions and Regular Languages

From FA to Type-3 grammar

1 From FA \rightarrow G3:
Given the $F A, A=(\Sigma, Q, q o, f, F)$, there is a right-linear grammar that fulfills

$$
L(G 3 R L)=L(A)
$$

That it is to say, the language generated by the grammar is the same that the recognized by the automaton

Following: How to obtain the grammar $\mathrm{G}=\left\{\Sigma_{\mathrm{T}}, \Sigma_{\mathrm{N}}, \mathrm{S}, \mathrm{P}\right\}$ from the $F A=\left\{Q, \Sigma, q_{0}, f, F\right\}$

From FA to Type-3 grammar

1 From FA \rightarrow G3:
Process:

- $\Sigma_{\mathrm{T}}=\Sigma ; \Sigma_{\mathrm{N}}=\mathbf{Q}, \mathrm{S}=\mathbf{q} \mathbf{0}$
- $\mathrm{P}=\{\ldots\}$

1. Transition $f(p, a)=q \rightarrow$ if q^{\prime} is not a final state $\rightarrow p::=a q$
2. $q \in F$ and $f(p, a)=q \rightarrow p::=a$ and $p::=a q$
3. $\mathrm{p} 0 \in \mathrm{~F} \rightarrow \mathrm{p} 0::=\lambda$
4. If $f(p, \lambda)=q \rightarrow p::=q$
5. $q \in F$ and $f(p, \lambda)=q \rightarrow p::=q$ and $q::=\lambda$

From FA to Type-3 grammar

1 From FA \rightarrow G3: Example
Given the FA described by the following table, calculate the right-linear G3 grammar that generates the language described by it. Verify that both languages are the same.

From Type-3 grammar to FA

2 From G3 \rightarrow FA:
Given a right-linear $\mathrm{G} 3, \mathrm{G}=\left(\Sigma_{T}, \Sigma_{N} \mathrm{~S}, \mathrm{P}\right)$, there is a FA, A, that fulfills: $L(G 3 L D)=L(A)$
Process:

- $\Sigma=\Sigma_{\mathrm{T}}$
- $\mathrm{Q}=\Sigma_{\mathrm{N}} \cup\{F\}$, with $\mathrm{F} \notin \Sigma_{\mathrm{N}}$
- $q 0=S$
- $\mathrm{F}=\{\mathrm{F}\}$
-f:
- If $A::=a B$
$\rightarrow \quad f(A, a)=B$
- If $A::=a \quad \rightarrow \quad f(A, a)=F$
- If $S::=\lambda \quad \rightarrow \quad f(S, \lambda)=F$

From Type-3 grammar to FA

2 From G3 \rightarrow FA: Example
Given the following right-linear G3 right-linear grammar, calculate the equivalent FA.
$G=(\{d, c\},\{A, S, T\}, A,\{A::=c S, S::=d / c S / d T, T::=d T / d\})$

From Type-3 grammar to FA

- We have seen the procedure to obtain a FA that accepts the language described by a G3 left-linear grammar, however, this procedure does not always lead to an DFA, typically:

$$
\mathrm{G} 3 \rightarrow \text { NFA } \rightarrow \text { DFA }
$$

Exercise 1: Given the left-linear grammar: $G=(\{0,1\},\{S, U\}, S,\{S::=U 0$, $\mathrm{U}::=\mathrm{U} 0|\mathrm{~S} 1| 0\})$ Calculate the corresponding DFA.

Exercise 2: Given the left-linear grammar: $\mathrm{G}=(\{0,1\},\{\mathrm{S}, \mathrm{U}\}, \mathrm{S},\{\mathrm{S}::=\mathrm{U} 0$ / $\lambda, \mathrm{U}::=\mathrm{U} 0|\mathrm{~S} 1| 0\}$) Calculate the corresponding DFA.

From Type-3 grammar to FA

Given the left-regular grammar G3: $\mathrm{G}=\left(\Sigma_{\mathrm{T}}, \Sigma_{\mathrm{N}}, \mathrm{S}, \mathrm{P}\right)$
From it, we build the $F A$: $A=\left(\Sigma_{T}, \Sigma_{N} \cup\{p, q\}, f, p,\{S\}\right)$
where: $\mathrm{p}, \mathrm{q} \notin \Sigma_{\mathrm{T}}$ and/or Σ_{N}
f is defined by:

$$
\begin{aligned}
& \text { 1) } f(U, t)=V \text { si } V::=U t \in P \\
& \text { 2) } f(p, t)=V \text { si } V::=t \in P \\
& \text { 3) } f(U, t)=q \quad \forall t \in \Sigma_{T} / V::=U t \notin P \\
& \text { 4) } f(p, t)=q \quad \forall t \in \Sigma_{T} / V::=t \notin P \\
& \text { 5) } f(q, t)=q \quad \forall t \in \Sigma_{T}
\end{aligned}
$$

From Type-3 grammar to FA

This definition does not ensure a deterministic FA since it is possible:

$$
\begin{aligned}
& \text { V1 }::=\text { Ut } \\
& \text { V2 }::=\text { Ut } \\
& \ldots \\
& \text { V3 }::=\text { Ut }
\end{aligned}
$$

From Type-3 grammar to FA

Given the G3 left-linear grammar:

$$
\begin{aligned}
& \mathrm{G}=(\{0,1\},\{\mathrm{S}, \mathrm{U}, \mathrm{~V}\}, \mathrm{S}, \mathrm{P}) \\
& \text { Where } \mathrm{P}=\{\mathrm{S}::=\mathrm{U} 0 / \mathrm{V} 1 \\
& \mathrm{U}::=\mathrm{S} 1 / 1 \\
& \mathrm{~V}::=\mathrm{S} 0 / 0\}
\end{aligned}
$$

Calculate the minimum DFA that recognizes the language generated by G.
Steps: 1) Calculate the FA (Determinist in this case)
2) Minimize it.
3) Calculate $L(G)$ and L (FA) and verify that they are the same.
4) Repeat the exercise by removing the induced axiom.

Additional Issues

And if we want to obtain a FA from a left-linear G3?

G3 left-linear \rightarrow G3 right-linear \rightarrow FA

And if we want to obtain a left-linear G3 from a FA?

FA \rightarrow G3 right-linear \rightarrow G3 left-linear

