AUTOMATA THEORY AND FORMAL LANGUAGES 2015-16

UNIT 5 – PART 2: REGULAR LANGUAGES

David Griol Barres Universidad Carlos III de Madrid

Regular Expressions. Bibliography

- Enrique Alfonseca Cubero, Manuel Alfonseca Cubero, Roberto Moriyón Salomón. Teoría de Autómatas y Lenguajes Formales. McGraw-Hill (2007). Section 7.2.
- John E. Hopcroft, Rajeev Motwani, Jeffrey D.Ullman. Introduction to Automata Theory, Languages, and Computation (3rd edition). Ed, Pearson Addison Wesley. Unit 3.
- Manuel Alfonseca, Justo Sancho, Miguel Martínez Orga. Teoría de Lenguajes, Gramáticas y Autómatas. Publicaciones R.A.E.C. 1997. Unit 7.

Unit 5. Part 2: Regular Expressions

- Definition of a Regular Expression (RE)
- Regular Expressions and Regular Languages
- Equivalence of Regular Expressions
- Analysis Theorem and Kleene's Synthesis Theorem
 - **Solution** Solution of the Analysis Problem. Characteristic Equations
 - Solution of the Characteristic Equations
 - □ Algorithm to Solve the Analysis Problem
 - Synthesis Problem: Recursive Algorithm
 - Synthesis Problem: Derivatives of Regular Expressions

Unit 5. Part 2: Regular Expressions

Definition of a Regular Expression (RE)

- Regular Expressions and Regular Languages
- Equivalence of Regular Expressions
- Analysis Theorem and Kleene's Synthesis Theorem
 - **Solution** Solution of the Analysis Problem. Characteristic Equations
 - **Solution of the Characteristic Equations**
 - □ Algorithm to Solve the Analysis Problem
 - Synthesis Problem: Recursive Algorithm
 - **Synthesis Problem: Derivatives of Regular Expressions**

Kleene, 1956:

"Metalanguage for expressing the set of words accepted by a FA (i.e. to express Type-3 or regular languages)"

Example: given the alphabet $\Sigma = \{0, 1\}$

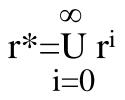
0*10* is a word of the metalanguage representing the infinite words which consist of a 1, preceded and followed by none, one or infinite zeros.

- Regular expressions: rules that define exactly the set of words that are included in the language.
- Main operators:
 - Concatenation: xy
 - Alternation: x | y (x or y)
 - **Repetition:** x* (x repeated 0 or more times)

 x^+ (x repeated 1 or more times)

- \square Given an alphabet Σ , the rules that define regular expressions of Σ are:
 - $\square \forall a \in \Sigma$ is a regular expression.
 - $f \lambda$ is a regular expression.
 - $f \Box \Phi$ is a regular expression.
 - If r and s are regular expressions, then

(r) r·s r | s r* are regular expressions.



□ Nothing else is a regular expression.

- 8
- Valid RE are those obtained after applying the previous rules a finite number of times over symbols of Σ , Φ , λ
- The priority of the different operations is the following:
 - *,•,+

Unit 5. Part 2: Regular Expressions

- Definition of a Regular Expression (RE)
- Regular Expressions and Regular Languages
- Equivalence of Regular Expressions
- Analysis Theorem and Kleene's Synthesis Theorem
 - **Solution of the Analysis Problem. Characteristic Equations**
 - **Solution of the Characteristic Equations**
 - □ Algorithm to Solve the Analysis Problem
 - Synthesis Problem: Recursive Algorithm
 - **Synthesis Problem: Derivatives of Regular Expressions**

Regular expressions and Regular Languages

Each RE describes a regular language

- Each RE α has a set of Σ* associated, L(α), that is the RL described by α. This language is defined by:
 - If $\alpha = \Phi$, $L(\alpha) = \Phi$
 - If $\alpha = \lambda$, $L(\alpha) = \{\lambda\}$
 - If $\alpha = a, a \in \Sigma$, $L(\alpha) = \{a\}$
 - If α and β are RE \Rightarrow L($\alpha \mid \beta$) = L(α) \cup L(β)
 - If α and β are RE \Rightarrow L($\alpha \cdot \beta$) = L(α) L(β)
 - If α^* is a RE \Rightarrow L(α^*) = L(α)*

Regular Expressions. Examples

Write the regular languages described by the following RE:

- 1) Given $\Sigma = \{a, b, \dots, z\}$ and $\alpha = (a|b|\dots|z)^*$, what is $L(\alpha)$?
- 2) Given $\Sigma = \{0,1\}$ and $\alpha = 0^*10^*$, what is L(α)?
- 3) Given $\Sigma = \{0,1\}$ and $\alpha = 01|000$, what is L(α)?
- 4) Given $\Sigma = \{a,b,c\}$ and $\alpha = a$ $(a|b|c)^*$, what is $L(\alpha)$?
- 5) Given $\Sigma = \{a,b,c\}$ and $\alpha = a|bc|b^2a$, what is $L(\alpha)$?

Unit 5. Part 2: Regular Expressions

- Definition of a Regular Expression (RE)
- Regular Expressions and Regular Languages

Equivalence of Regular Expressions

- Analysis Theorem and Kleene's Synthesis Theorem
 - □ Solution of the Analysis Problem. Characteristic Equations
 - **Solution of the Characteristic Equations**
 - □ Algorithm to Solve the Analysis Problem
 - Synthesis Problem: Recursive Algorithm
 - **Synthesis Problem: Derivatives of Regular Expressions**

Equivalence of Regular Expressions

Two RE are equivalent, $\alpha = \beta$, if they describe the same regular language, $L(\alpha) = L(\beta)$. <u>Properties</u>: (| is associative) 1) $(\alpha \mid \beta) \mid \sigma = \alpha \mid (\beta \mid \sigma)$ 2) $\alpha \mid \beta = \beta \mid \alpha$ (| is commutative) 3) $(\alpha \bullet \beta) \bullet \sigma = \alpha \bullet (\beta \bullet \sigma)$ (• is associative) 4) $\alpha \cdot (\beta \mid \sigma) = (\alpha \cdot \beta) \mid (\alpha \cdot \sigma)$ (| is distributive $(\beta \mid \sigma) \bullet \alpha = (\beta \bullet \alpha) \mid (\sigma \bullet \alpha)$ regarding •) (• has a neutral element) 5) $\alpha \bullet \lambda = \lambda \bullet \alpha = \alpha$ 6) $\alpha \mid \Phi = \Phi \mid \alpha = \alpha$ (has a neutral element) 7) $\lambda^* = \lambda$ 8) $\alpha \bullet \Phi = \Phi \bullet \alpha = \Phi$

Equivalence of Regular Expressions

9)
$$\Phi^* = \lambda$$

10) $\alpha^* \cdot \alpha^* = \alpha^*$
11) $\alpha \cdot \alpha^* = \alpha^* \cdot \alpha$
12) $(\alpha^*)^* = \alpha^*$ (IMPORTANT)
13) $\alpha^* = \lambda | \alpha | \alpha^2 | ... | \alpha^n | \alpha^{n+1} \cdot \alpha^*$
14) $\alpha^* = \lambda | \alpha \cdot \alpha^*$ (13 with n=0) (IMPORTANT)
15) $\alpha^* = (\lambda | \alpha)^{n-1} | \alpha^n \cdot \alpha^*$ (from 14)
16) Given a function f, f: $E^n_{\Sigma} \rightarrow E_{\Sigma}$ then:
 $f(\alpha, \beta, ..., \sigma) | (\alpha | \beta | ... | \sigma)^* = (\alpha | \beta | ... | \sigma)^*$
17) Given a function, f: $E^n_{\Sigma} \rightarrow E_{\Sigma}$ then:
 $(f(\alpha^*, \beta^*, ..., \sigma^*))^* = (\alpha | \beta | ... | \sigma)^*$

Equivalence of Regular Expressions

18)
$$(\alpha^* | \beta^*)^* = (\alpha^* \cdot \beta^*)^* = (\alpha | \beta)^*$$
 (IMPORTANT)
19) $(\alpha \cdot \beta)^* \cdot \alpha = \alpha \cdot (\beta \cdot \alpha)^*$
20) $(\alpha^* \cdot \beta)^* \cdot \alpha^* = (\alpha | \beta)^*$
21) $(\alpha^* \cdot \beta)^* = \lambda | (\alpha | \beta)^* \cdot \beta$ (from 14 with 20)
22) Inference Rules:

given three regular expressions R,T and S:

 $\mathsf{R} = \mathsf{S}^* \bullet \mathsf{T} \Longrightarrow \mathsf{R} = \mathsf{S} \bullet \mathsf{R} \mid \mathsf{T}$

If $\lambda \notin S$, then: R = S • R | T \Rightarrow R = S* • T

Unit 5. Part 2: Regular Expressions

- Definition of a Regular Expression (RE)
- Regular Expressions and Regular Languages
- Equivalence of Regular Expressions
- Analysis Theorem and Kleene's Synthesis Theorem
 - □ Solution of the Analysis Problem. Characteristic Equations
 - **Solution of the Characteristic Equations**
 - □ Algorithm to Solve the Analysis Problem
 - Synthesis Problem: Recursive Algorithm
 - **Synthesis Problem: Derivatives of Regular Expressions**

Analysis and Kleene's Synthesis Theorems

1) Analysis Theorem:

Every language accepted by a FA is a regular language.

Solution to the problem of analysis: To find the language associated to a specific FA: "Given a FA, A, find a RE that describes L(A)".

2) Synthesis Theorem:

Every regular language is a language accepted by a FA.

<u>Solution to the problem of synthesis</u>: To find a recognizer for a given regular language: "Given a RE representing a regular language, build a FA that accepts that regular language".

Unit 5. Part 2: Regular Expressions

- Definition of a Regular Expression (RE)
- Regular Expressions and Regular Languages
- Equivalence of Regular Expressions
- Analysis Theorem and Kleene's Synthesis Theorem
 - **Solution of the Analysis Problem. Characteristic Equations**
 - **Solution of the Characteristic Equations**
 - □ Algorithm to Solve the Analysis Problem
 - Synthesis Problem: Recursive Algorithm
 - **Synthesis Problem: Derivatives of Regular Expressions**

19

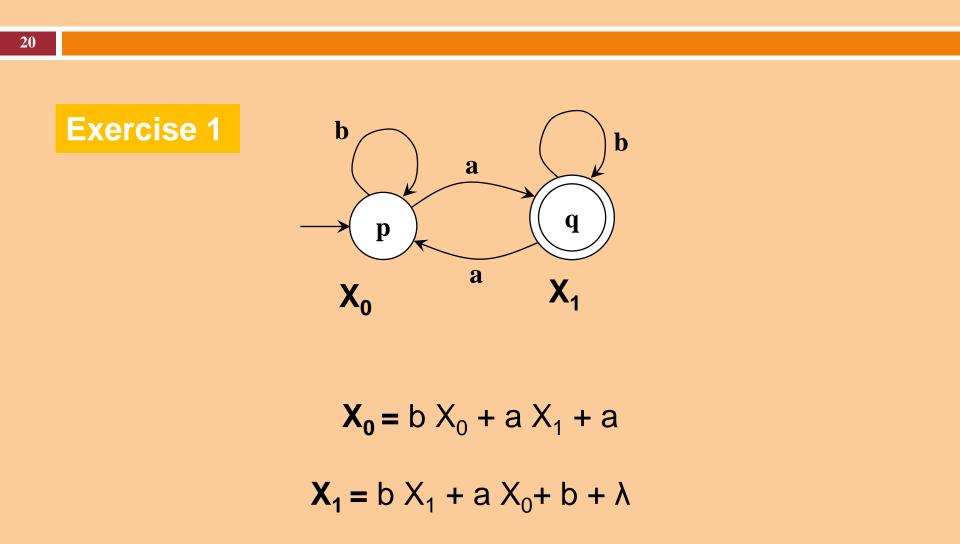
<u>ANALYSIS PROBLEM (AF \rightarrow RE)</u>: Given a FA, write the characteristic equations of each one of its states, solve them and obtain the requested RE.

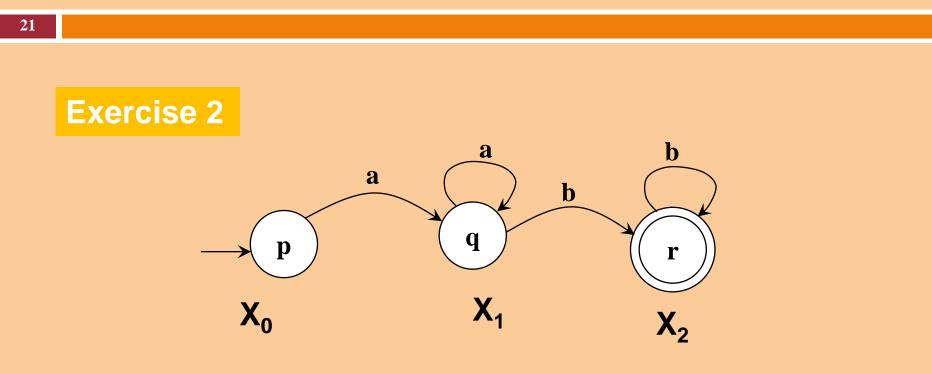
• CHARACTERISTIC EQUATIONS: They describe all the strings that can be recognized from a given state:

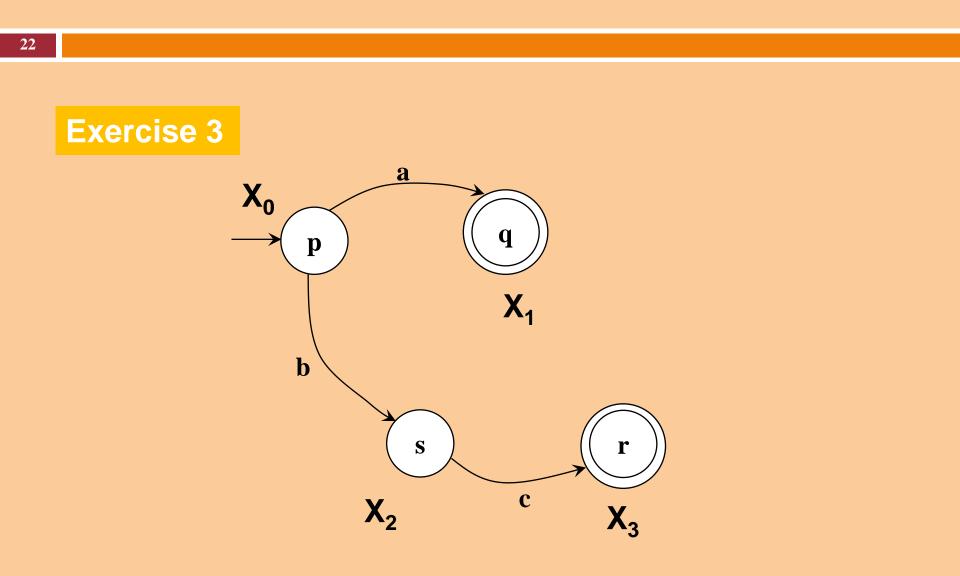
- An equation x_i is written for each state q_i
 - First member x_i;
 - $\bullet\,$ The second member has a term for each branch from ${\rm q}_{i}$
 - Branches has the format $a_{ij} \cdot x_j$ where a_{ij} is the label of the branch that joins qi with q_j , x_j is the variable corresponding to q_j
 - A term a_{ij} is added for each branch that joins q_i with a final state.
 - λ is added is q_i is a final state.
 - If there is not an output branch for a state, the second member will be:

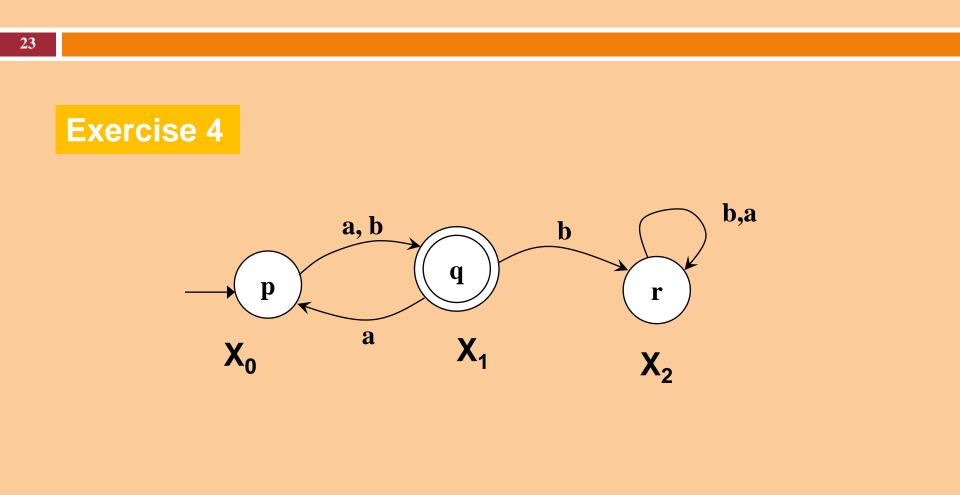
If it is a final state: $x_i = \lambda$

If it not a final state: $x_i = \Phi$









Unit 5. Part 2: Regular Expressions

- Definition of a Regular Expression (RE)
- Regular Expressions and Regular Languages
- Equivalence of Regular Expressions
- Analysis Theorem and Kleene's Synthesis Theorem
 - □ Solution of the Analysis Problem. Characteristic Equations

Solution of the Characteristic Equations

- □ Algorithm to Solve the Analysis Problem
- Synthesis Problem: Recursive Algorithm
 - **Synthesis Problem: Derivatives of Regular Expressions**

Solution of the Characteristic Equations

They have the form: X = AX + B

where:

X: set of strings that allow transitting from q_i to $q_f \in F$

A: set of strings that allows reaching a state q from q.

B: set of strings that allows reaching a final state, without reaching again the leaving state q_i .

 \bigvee (Arden solution or proof by contradiction)

The solution is: $\mathbf{X} = \mathbf{A}^* \cdot \mathbf{B}$

Unit 5. Part 2: Regular Expressions

- Definition of a Regular Expression (RE)
- Regular Expressions and Regular Languages
- Equivalence of Regular Expressions
- Analysis Theorem and Kleene's Synthesis Theorem
 - □ Solution of the Analysis Problem. Characteristic Equations
 - **Solution of the Characteristic Equations**
 - Algorithm to Solve the Analysis Problem
 - □ Synthesis Problem: Recursive Algorithm
 - **Synthesis Problem: Derivatives of Regular Expressions**

Solution of the Analysis Problem. Algorithm

1. Write the characteristic equations of the FA.

2. Resolve them.

3. If the initial state is q_0 , X_0 gives us the set of strings that leads from q_0 to q_f and, therefore, the language accepted by the FA.

Unit 5. Part 2: Regular Expressions

- Definition of a Regular Expression (RE)
- Regular Expressions and Regular Languages
- Equivalence of Regular Expressions
- Analysis Theorem and Kleene's Synthesis Theorem
 - □ Solution of the Analysis Problem. Characteristic Equations
 - **Solution** of the Characteristic Equations
 - □ Algorithm to Solve the Analysis Problem
 - Synthesis Problem: Recursive Algorithm
 - **Synthesis Problem: Derivatives of Regular Expressions**

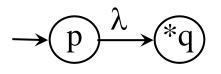
29

<u>SYNTHESIS PROBLEM (RE \rightarrow FA):</u> "Given an RE representing a regular language, build a FA that accepts that regular language.

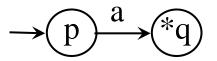
(*q)

- Given a regular expression α :
 - If $\alpha = \Phi$, the automaton is:

If $\alpha = \lambda$, the automaton is:

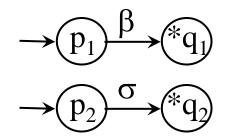


 \square If $\alpha = a, a \in \Sigma$, the automaton is:

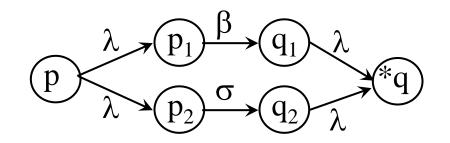


30

• If $\alpha = \beta \mid \sigma$, using the automata β and σ

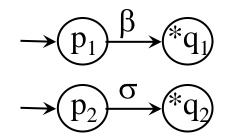


the result is:

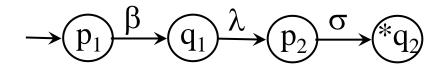


31

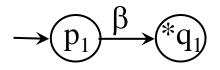
• If $\alpha = \beta \bullet \sigma$, using the automata β and σ



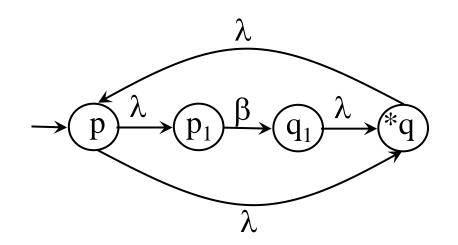
the result is:



• If $\alpha = \beta^*$, using the automata β

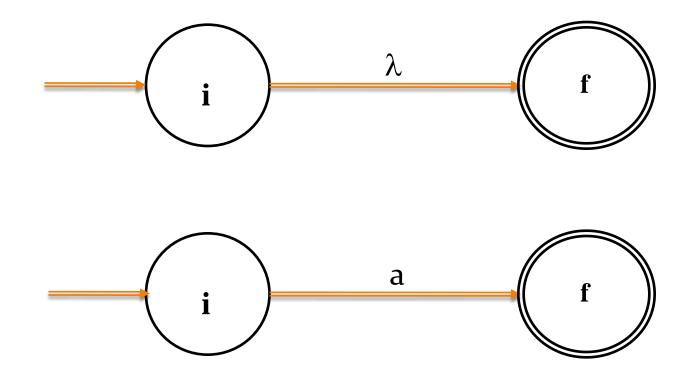


the result is:



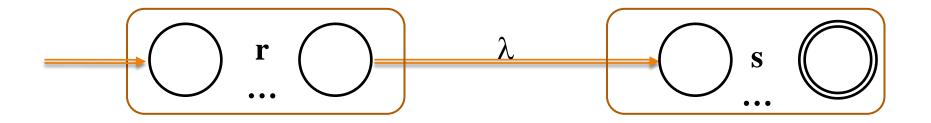
Summary

Basic Regular expressions (λ , a):



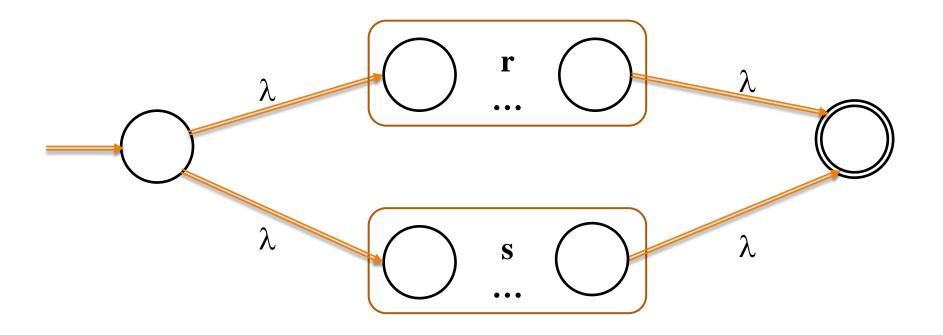
Summary

Concatenation rs:



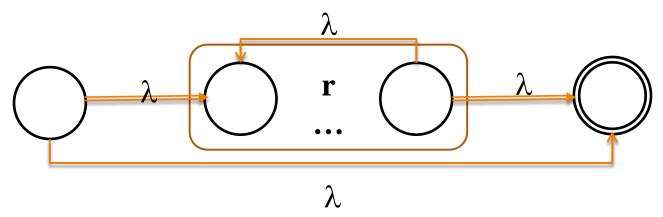
Summary

Selection r | s:



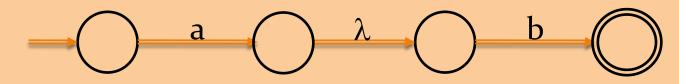
Summary

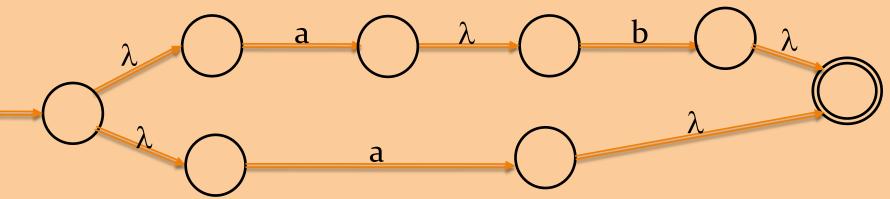
Repetition r*:



37

Example 1: ab | a



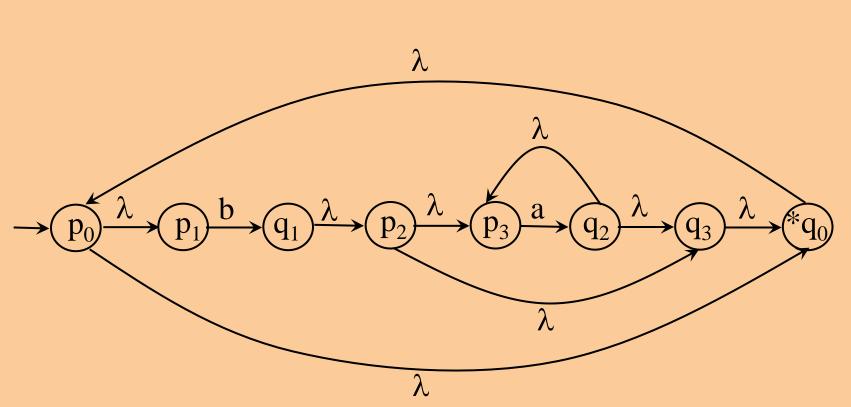


38

• Example $\alpha = (b \bullet a^*)^*$ λ a*: **b**: λ □ b • a* λ λ a λ

39

□ (b • a*)*		b	•	a*))*
-------------	--	---	---	-----	----



Unit 5. Part 2: Regular Expressions

- Definition of a Regular Expression (RE)
- Regular Expressions and Regular Languages
- Equivalence of Regular Expressions
- Analysis Theorem and Kleene's Synthesis Theorem
 - **Solution of the Analysis Problem. Characteristic Equations**
 - **Solution of the Characteristic Equations**
 - □ Algorithm to Solve the Analysis Problem
 - Synthesis Problem: Recursive Algorithm

Synthesis Problem: Derivatives of Regular Expressions

• Given a RE, construct a FA which recognizes the language that the RE describes.

Derive the RE and obtain a Right-Linear G3 and, from it, a FA.
 Derivative of a RE?

- Derivative of a RE: $D_{a}(R) = \{ x \mid a \bullet x \in R \}.$
 - Derivative of a regular expression R with regard an input symbol a ∈Σ is the set of cues of every word represented by R whose head is a.
 - Let's see a recursive definition.

41

42

Given an RE \rightarrow right-linear G3 grammar \rightarrow FA which recognizes the language that describes the ER.

 $D_a(R) = \{ x \mid a.x \in R \}$

Derivative of a RE: <u>Recursive definition</u>. \forall a, b $\in \Sigma$ and R, S Reg. Exp.

- $D_a(\Phi) = \Phi$
- $D_a(\lambda) = \Phi$
- $D_a(a) = \lambda$, $a \in \Sigma$
- $D_a(b) = \Phi$, $\forall b \neq a, b \in \Sigma$
- $D_a (R+S) = D_a (R) + D_a (S)$
- $D_a(R \bullet S) = D_a(R) \bullet S + \delta(R) \bullet D_a(S) \quad \forall R$
 - $\lambda \in \Sigma \implies \delta(\mathsf{R}) = \lambda$
 - $\lambda \notin \Sigma \implies \delta(\mathsf{R}) = \Phi$
- D_a (R*) = D_a(R) R*

Definition: D_{ab}(R)=D_b(D_a(R))

43

- From a derivative of a RE, obtain the right-linear G3 grammar.
 - The number of different derivatives of a RE is finite.
 - Once all have been obtained, you can obtain the G3 grammar:
 - Given $D_a(R) = S$, with $S \neq \Phi$
 - $S \neq \lambda \implies R ::= aS \in P$
 - $S = \lambda \implies R ::= a \in P$
 - Given $\delta(D_a(R)) = S$
 - $\delta(D_a(R)) = \lambda \implies R ::= a \in P$
 - $\delta(D_a(R)) = \Phi \Rightarrow$ no rules included in P
 - The axiom is R (starting RE)
 - ΣT = symbols that make up the starting RE.
 - ΣN = letters which distinguish each one of the different derivatives.

44

Obtain the G3 RL grammars that are equivalent to the following RE:

- $D_a(R) = D_a(a) a^* b b^* = a^* b b^*$
- $D_{\rm b}(\mathsf{R}) = \Phi$
- $D_{aa}(R) = D_{a}(a^{*} b b^{*}) = D_{a}(a^{*}) b b^{*} + \lambda D_{a}(b b^{*}) = a^{*}bb^{*} = D_{a}(R)$

 $\delta(\mathsf{D}_{aa}(\mathsf{R})) = \Phi$

 $- D_{ab}(R) = D_{b}(a^{*} b b^{*}) = D_{b}(a^{*}) b b^{*} + \lambda D_{b}(b b^{*}) = b^{*}$

$$- \mathsf{D}_{\mathsf{aba}}(\mathsf{R}) = \mathsf{D}_{\mathsf{a}}(\mathsf{b}^*) = \Phi$$

- $D_{abb}(R) = D_{b}(b^{*}) = D_{b}(b) b^{*} = b^{*} = D_{ab}(R)$
- $D_a(R) = a^*bb^*$ $\delta(D_a(R)) = \Phi$
- $D_{aa}(R) = a^*bb^*$
- $D_{ab}(R) = b^*$
- $\delta(\mathsf{D}_{\mathsf{ab}}(\mathsf{R})) = \lambda$ $- D_{abb}(R) = b^*$ $\delta(\mathsf{D}_{\mathsf{abb}}(\mathsf{R})) = \lambda$

45			
	 R₀=aa*bb* 	R ₁ =a*bb*	R ₂ =b*
	• $D_a(R_0)=R_1$ • $D_a(R_1)=R_1$ • $D_b(R_1)=R_2$ • $D_b(R_2)=R_2$	$\begin{split} &\delta(D_{a}(R_0)) = \Phi \\ &\delta(D_{a}(R_1)) = \Phi \\ &\delta(D_{b}(R_1)) = \lambda \\ &\delta(D_{b}(R_2)) = \lambda \end{split}$	
	• $D_a(R)=S \implies R \rightarrow a$ • $R_0 \rightarrow aR_1$ • $R_1 \rightarrow aR_1$ • $R_1 \rightarrow bR_2$ • $R_2 \rightarrow bR_2$	aS $\delta(D_a)$ $R_1 \rightarrow$ $R_2 \rightarrow$	