
AUTOMATA THEORY

AND FORMAL LANGUAGES

2015-16

UNIT 5 – PART 2: REGULAR LANGUAGES

David Griol Barres
Universidad Carlos III de Madrid

 Enrique Alfonseca Cubero, Manuel Alfonseca Cubero, Roberto

Moriyón Salomón. Teoría de Autómatas y Lenguajes Formales.

McGraw-Hill (2007). Section 7.2.

 John E. Hopcroft, Rajeev Motwani, Jeffrey D.Ullman. Introduction to

Automata Theory, Languages, and Computation (3rd edition). Ed,

Pearson Addison Wesley. Unit 3.

 Manuel Alfonseca, Justo Sancho, Miguel Martínez Orga. Teoría de

Lenguajes, Gramáticas y Autómatas. Publicaciones R.A.E.C. 1997.

Unit 7.

Regular Expressions. Bibliography

OUTLINE

Unit 5. Part 2: Regular Expressions

 Definition of a Regular Expression (RE)

 Regular Expressions and Regular Languages

 Equivalence of Regular Expressions

 Analysis Theorem and Kleene's Synthesis Theorem

 Solution of the Analysis Problem. Characteristic Equations

 Solution of the Characteristic Equations

 Algorithm to Solve the Analysis Problem

 Synthesis Problem: Recursive Algorithm

 Synthesis Problem: Derivatives of Regular Expressions

OUTLINE

Unit 5. Part 2: Regular Expressions

 Definition of a Regular Expression (RE)

 Regular Expressions and Regular Languages

 Equivalence of Regular Expressions

 Analysis Theorem and Kleene's Synthesis Theorem

 Solution of the Analysis Problem. Characteristic Equations

 Solution of the Characteristic Equations

 Algorithm to Solve the Analysis Problem

 Synthesis Problem: Recursive Algorithm

 Synthesis Problem: Derivatives of Regular Expressions

5

Kleene, 1956:

“Metalanguage for expressing the set of words

accepted by a FA (i.e. to express Type-3 or regular

languages)"

 Example: given the alphabet = {0,1}

0*10* is a word of the metalanguage representing the infinite words which

consist of a 1, preceded and followed by none, one or infinite zeros.

Definition of Regular Expression

 Regular expressions: rules that define exactly the

set of words that are included in the language.

 Main operators:

 Concatenation: xy

Alternation: x|y (x or y)

 Repetition: x* (x repeated 0 or more times)

 x+ (x repeated 1 or more times)

Definition of Regular Expression
6

 Given an alphabet , the rules that define regular expressions
of  are:

 a is a regular expression.

  is a regular expression.

  is a regular expression.

 If r and s are regular expressions, then

 (r) r·s r|s r*

 are regular expressions.

 Nothing else is a regular expression.

Definition of Regular Expression

 r*=U ri
i=0



7

Definition of Regular Expression
8

 Valid RE are those obtained after applying the

previous rules a finite number of times over symbols

of , , 

 The priority of the different operations is the

following:

• *, • ,+

OUTLINE

Unit 5. Part 2: Regular Expressions

 Definition of a Regular Expression (RE)

 Regular Expressions and Regular Languages

 Equivalence of Regular Expressions

 Analysis Theorem and Kleene's Synthesis Theorem

 Solution of the Analysis Problem. Characteristic Equations

 Solution of the Characteristic Equations

 Algorithm to Solve the Analysis Problem

 Synthesis Problem: Recursive Algorithm

 Synthesis Problem: Derivatives of Regular Expressions

10

Each RE describes a regular language

 Each RE  has a set of * associated, L(), that is the RL described by

. This language is defined by:

 If  = , L() = 

 If  = , L() = {}

 If  = a, a   , L() = {a}

 If  and  are RE  L( | ) = L()  L()

 If  and  are RE  L( • ) = L() L()

 If * is a RE  L(*) = L()*

Regular expressions and Regular Languages

11

Write the regular languages described by the following RE:

1) Given  = {a,b,...,z} and  = (a|b|...|z)*, what is L()?

2) Given  = {0,1} and  = 0*10*, what is L()?

3) Given  = {0,1} and  = 01|000, what is L()?

4) Given  = {a,b,c} and  = a (a|b|c)*, what is L()?

5) Given  = {a,b,c} and  = a|bc|b2a, what is L()?

Regular Expressions. Examples

OUTLINE

Unit 5. Part 2: Regular Expressions

 Definition of a Regular Expression (RE)

 Regular Expressions and Regular Languages

 Equivalence of Regular Expressions

 Analysis Theorem and Kleene's Synthesis Theorem

 Solution of the Analysis Problem. Characteristic Equations

 Solution of the Characteristic Equations

 Algorithm to Solve the Analysis Problem

 Synthesis Problem: Recursive Algorithm

 Synthesis Problem: Derivatives of Regular Expressions

13

 Two RE are equivalent,  = , if they describe the same

regular language, L() = L(). Properties:

1) ( | ) |  =  | ( | ) (| is associative)

2)  |  =  |  (| is commutative)

3) ( • ) •  =  • ( • ) (• is associative)

4)  •( | ) = ( • ) | ( • ) (| is distributive

 ( | ) •  = ( • ) | ( • ) regarding •)

5)  •  =  •  =  (• has a neutral element)

6)  |  =  |  =  (| has a neutral element)

7) * = 

8)  •  =  •  = 

Equivalence of Regular Expressions

Equivalence of Regular Expressions
14

9) * = 

10) * • * = *

11)  • * = * • 

12) ( *)* = * (IMPORTANT)

13) * =  |  | 2 | .. | n | n+1. *

14) * =  |  • * (13 with n=0) (IMPORTANT)

15) * = ( | )n-1 | n • * (from 14)

16) Given a function f, f:En
  E  then:

 f(, , ..., ) | ( |  | ... | )* = ( |  | ... | )*

17) Given a function, f:En
  E  then:

 (f(*, *, ..., *))* = ( |  | ... | )*

15

18) (* | *)* = (* • *)* = ( | )* (IMPORTANT)

19) ( • )* •  =  • ( • )*

20) (* • )* • * = ( | )*

21) (* • )* =  | ( | )* •  (from 14 with 20)

22) Inference Rules:

 given three regular expressions R,T and S:

 R = S* • T  R = S • R | T

 If   S, then:

 R = S • R | T  R = S* • T

Equivalence of Regular Expressions

OUTLINE

Unit 5. Part 2: Regular Expressions

 Definition of a Regular Expression (RE)

 Regular Expressions and Regular Languages

 Equivalence of Regular Expressions

 Analysis Theorem and Kleene's Synthesis Theorem

 Solution of the Analysis Problem. Characteristic Equations

 Solution of the Characteristic Equations

 Algorithm to Solve the Analysis Problem

 Synthesis Problem: Recursive Algorithm

 Synthesis Problem: Derivatives of Regular Expressions

Analysis and Kleene’s Synthesis Theorems

17

1) Analysis Theorem:

Every language accepted by a FA is a regular language.

Solution to the problem of analysis: To find the language
associated to a specific FA: “Given a FA, A, find a RE
that describes L(A)”.

2) Synthesis Theorem:

Every regular language is a language accepted by a FA.

Solution to the problem of synthesis: To find a recognizer
for a given regular language: “Given a RE representing
a regular language, build a FA that accepts that
regular language”.

OUTLINE

Unit 5. Part 2: Regular Expressions

 Definition of a Regular Expression (RE)

 Regular Expressions and Regular Languages

 Equivalence of Regular Expressions

 Analysis Theorem and Kleene's Synthesis Theorem

 Solution of the Analysis Problem. Characteristic Equations

 Solution of the Characteristic Equations

 Algorithm to Solve the Analysis Problem

 Synthesis Problem: Recursive Algorithm

 Synthesis Problem: Derivatives of Regular Expressions

Solution of the Analysis Problem. Characteristic Equations

19

ANALYSIS PROBLEM (AFRE): Given a FA, write the characteristic
equations of each one of its states, solve them and obtain the
requested RE.

 CHARACTERISTIC EQUATIONS: They describe all the strings that
can be recognized from a given state:

 An equation xi is written for each state qi

 First member xi;

 The second member has a term for each branch from qi

 Branches has the format aij • xj where aij is the label of the branch
that joins qi with qj, xj is the variable corresponding to qj

 A term aij is added for each branch that joins qi with a final state.

  is added is qi is a final state.

 If there is not an output branch for a state, the second member will
be:

 If it is a final state: xi = 

 If it not a final state: xi = 

20

p

a

a

q

b b

X0 X1

X0 = b X0 + a X1 + a

X1 = b X1 + a X0+ b + λ

Solution of the Analysis Problem. Characteristic Equations

Exercise 1

21

a
a

X0

b

b

p

X1

r
q

X2

Solution of the Analysis Problem. Characteristic Equations

Exercise 2

22

a
X0

X1

X3 X2

p q

s r

b

c

Solution of the Analysis Problem. Characteristic Equations

Exercise 3

23

a, b

X0

b
b,a

p

X1

r

X2

q

a

Solution of the Analysis Problem. Characteristic Equations

Exercise 4

OUTLINE

Unit 5. Part 2: Regular Expressions

 Definition of a Regular Expression (RE)

 Regular Expressions and Regular Languages

 Equivalence of Regular Expressions

 Analysis Theorem and Kleene's Synthesis Theorem

 Solution of the Analysis Problem. Characteristic Equations

 Solution of the Characteristic Equations

 Algorithm to Solve the Analysis Problem

 Synthesis Problem: Recursive Algorithm

 Synthesis Problem: Derivatives of Regular Expressions

25

They have the form: X = AX + B

where:

X: set of strings that allow transitting from qi to qf F

A: set of strings that allows reaching a state q from q.

B: set of strings that allows reaching a final state, without

reaching again the leaving state qi.

 (Arden solution or proof by contradiction)

The solution is: X = A* • B

Solution of the Characteristic Equations

OUTLINE

Unit 5. Part 2: Regular Expressions

 Definition of a Regular Expression (RE)

 Regular Expressions and Regular Languages

 Equivalence of Regular Expressions

 Analysis Theorem and Kleene's Synthesis Theorem

 Solution of the Analysis Problem. Characteristic Equations

 Solution of the Characteristic Equations

 Algorithm to Solve the Analysis Problem

 Synthesis Problem: Recursive Algorithm

 Synthesis Problem: Derivatives of Regular Expressions

27

1. Write the characteristic equations of the FA.

2. Resolve them.

3.If the initial state is q0, X0 gives us the set of
strings that leads from q0 to qf and, therefore,
the language accepted by the FA.

Solution of the Analysis Problem. Algorithm

OUTLINE

Unit 5. Part 2: Regular Expressions

 Definition of a Regular Expression (RE)

 Regular Expressions and Regular Languages

 Equivalence of Regular Expressions

 Analysis Theorem and Kleene's Synthesis Theorem

 Solution of the Analysis Problem. Characteristic Equations

 Solution of the Characteristic Equations

 Algorithm to Solve the Analysis Problem

 Synthesis Problem: Recursive Algorithm

 Synthesis Problem: Derivatives of Regular Expressions

29

 Given a regular expression :

• If = , the automaton is:

 If = , the automaton is:

 If = a, a, the automaton is:

p *q

p *q


p *q
a

SYNTHESIS PROBLEM (REFA): “Given an RE representing a

regular language, build a FA that accepts that regular language.

Synthesis Problem: Recursive Algorithm

30

• If =|, using the automata  and 

 the result is:

p1 *q1


p2 *q2


p1 q1


p2 q2


p *q








Synthesis Problem: Recursive Algorithm

31

• If = • , using the automata  and 

 the result is:

p1 *q1


p2 *q2


p1 q1


p2 *q2
 

Synthesis Problem: Recursive Algorithm

32

• If =*, using the automata 

 the result is:

p1 *q1


 p p1


q1 *q
 





Synthesis Problem: Recursive Algorithm

Summary

i


f

Basic Regular expressions (, a):

i

a
f

Synthesis Problem: Recursive Algorithm
33



Concatenation rs:

r

…

s

…

Synthesis Problem: Recursive Algorithm

Summary

34



Selection r | s:

r

…

s

…







Synthesis Problem: Recursive Algorithm

Summary

35



Repetition r*:

r

…







Synthesis Problem: Recursive Algorithm

Summary

36

Example 1: ab | a

a

ab

b

a b 

a b 


a






ab|a

Synthesis Problem: Recursive Algorithm
37

38

• Example =(b • a*)*

 b: a*:

 b • a*

p1 *q1
b

 p2 p3


q2 *q3
 a





 p2 p3


q2 *q3
 a





p1 q1
b 

Synthesis Problem: Recursive Algorithm

39

 (b • a*)*

p0 *q0
 p2 p3


q2 q3

 a





p1 q1
b  





Synthesis Problem: Recursive Algorithm

OUTLINE

Unit 5. Part 2: Regular Expressions

 Definition of a Regular Expression (RE)

 Regular Expressions and Regular Languages

 Equivalence of Regular Expressions

 Analysis Theorem and Kleene's Synthesis Theorem

 Solution of the Analysis Problem. Characteristic Equations

 Solution of the Characteristic Equations

 Algorithm to Solve the Analysis Problem

 Synthesis Problem: Recursive Algorithm

 Synthesis Problem: Derivatives of Regular Expressions

• Given a RE, construct a FA which recognizes the language
that the RE describes.

 Derive the RE and obtain a Right-Linear G3 and, from it, a FA.

 Derivative of a RE?

• Derivative of a RE: Da(R) = { x | a•x  R }.

 Derivative of a regular expression R with regard an input symbol

 a Σ is the set of cues of every word represented by R whose head is a.

 Let’s see a recursive definition.

41

Solution to the synthesis problem: Derivatives of

Regular Expressions

42

Given an RE  right-linear G3 grammar  FA which recognizes the
language that describes the ER.

Da(R) = { x | a.x  R }

Derivative of a RE: Recursive definition.  a, b   and R, S Reg. Exp.

• Da () = 

• Da () = 

• Da (a) = , a

• Da (b) = ,  b  a, b

• Da (R+S) = Da (R) + Da (S)

• Da (R • S) = Da(R) • S + (R) • Da(S) R

   (R) = 

   (R) = 

• Da (R*) = Da(R) • R*

Solution to the synthesis problem: Derivatives of

Regular Expressions

43

 Definition: Dab(R)=Db(Da(R))

 From a derivative of a RE, obtain the right-linear G3 grammar.

 The number of different derivatives of a RE is finite.

 Once all have been obtained, you can obtain the G3 grammar:

 Given Da(R) = S, with S  

 S    R ::= aS  P

 S =   R ::= a  P

 Given (Da(R)) = S

 (Da(R)) =   R::= a  P

 (Da(R)) =   no rules included in P

 The axiom is R (starting RE)

 T = symbols that make up the starting RE.

 N = letters which distinguish each one of the different derivatives.

Solution to the synthesis problem: Derivatives of

Regular Expressions

44

Obtain the G3 RL grammars that are equivalent to the following RE:

 R = a • a* • b • b*, ={a,b}

– Da(R) = Da(a) a* b b* = a* b b*

– Db(R) = 

– Daa(R) = Da(a* b b*) = Da(a*) b b* +  Da(b b*) = a*bb* = Da(R)

– Dab(R) = Db(a* b b*) = Db(a*) b b* +  Db(b b*) = b*

– Daba(R) = Da(b*) = 

– Dabb(R) = Db(b*) = Db(b) b* = b* = Dab(R)

– Da(R)= a*bb* (Da(R))= 

– Daa(R)= a*bb* (Daa(R))= 

– Dab(R)= b* (Dab(R))= 

– Dabb(R)= b* (Dabb(R))= 

Solution to the synthesis problem: Derivatives of

Regular Expressions

45

• R0=aa*bb* R1=a*bb* R2=b*

• Da(R0)=R1 (Da(R0))= 
• Da(R1)=R1 (Da(R1))= 

• Db(R1)=R2 (Db(R1))= 

• Db(R2)=R2 (Db(R2))= 

• Da(R)=S  RaS (Da(R))=   Ra

• R0  aR1 ----------

• R1  aR1 ----------

• R1  bR2 R1  b

• R2  bR2 R2  b

Solution to the synthesis problem: Derivatives of

Regular Expressions

