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512  Distributed Forces: Moments of Inertia
MOMENTS OF INERTIA OF MASSES

9.11 MOMENT OF INERTIA OF A MASS
Consider a small mass Dm mounted on a rod of negligible mass 
which can rotate freely about an axis AA9 (Fig. 9.20a). If a couple 
is applied to the system, the rod and mass, assumed to be initially 
at rest, will start rotating about AA9. The details of this motion will 
be studied later in dynamics. At present, we wish only to indicate 
that the time required for the system to reach a given speed of 
rotation is proportional to the mass Dm and to the square of the 
distance r. The product r2 Dm provides, therefore, a measure of 
the inertia of the system, i.e., a measure of the resistance the sys-
tem offers when we try to set it in motion. For this reason, the 
product r2 Dm is called the moment of inertia of the mass Dm with 
respect to the axis AA9.
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r2 r3
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Δm2
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Δm3
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m
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r k

(a) (b) (c)

Fig. 9.20

 Consider now a body of mass m which is to be rotated about 
an axis AA9 (Fig. 9.20b). Dividing the body into elements of mass 
Dm1, Dm2, etc., we find that the body’s resistance to being rotated is 
measured by the sum r2

1 Dm1 1 r2
2 Dm2 1 . . .. This sum defines, 

therefore, the moment of inertia of the body with respect to the axis 
AA9. Increasing the number of elements, we find that the moment 
of inertia is equal, in the limit, to the integral

 I 5 #  r2 dm (9.28)
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513 The radius of gyration k of the body with respect to the axis 
AA9 is defined by the relation

 
I 5 k2m   or   k 5 B

I
m  

(9.29)

The radius of gyration k represents, therefore, the distance at which 
the entire mass of the body should be concentrated if its moment of 
inertia with respect to AA9 is to remain unchanged (Fig. 9.20c). 
Whether it is kept in its original shape (Fig. 9.20b) or whether it is 
concentrated as shown in Fig. 9.20c, the mass m will react in the 
same way to a rotation, or gyration, about AA9.
 If SI units are used, the radius of gyration k is expressed in 
meters and the mass m in kilograms, and thus the unit used for the 
moment of inertia of a mass is kg ? m2. If U.S. customary units are 
used, the radius of gyration is expressed in feet and the mass in slugs 
(i.e., in lb · s2/ft), and thus the derived unit used for the moment of 
inertia of a mass is lb ? ft ? s2.†
 The moment of inertia of a body with respect to a coordinate 
axis can easily be expressed in terms of the coordinates x, y, z 
of the element of mass dm (Fig. 9.21). Noting, for example, that 
the square of the distance r from the element dm to the y axis is 
z2 1 x2, we express the moment of inertia of the body with respect 
to the y axis as

Iy 5 #  r
2 dm 5 #  (z2 1 x2) dm

Similar expressions can be obtained for the moments of inertia with 
respect to the x and z axes. We write

 Ix 5 #  (y2 1 z2) dm

  Iy 5 #  (z2 1 x2) dm (9.30)

 Iz 5 #  (x2 1 y2) dm

†It should be kept in mind when converting the moment of inertia of a mass from 
U.S. customary units to SI units that the base unit pound used in the derived unit 
lb ? ft ? s2 is a unit of force (not of mass) and should therefore be converted into 
 newtons. We have

1 lb ? ft ? s2 5 (4.45 N)(0.3048 m)(1 s)2 5 1.356 N ? m ? s2

or, since 1 N 5 1 kg ? m/s2,

1 lb ? ft ? s2 5 1.356 kg ? m2

dm

x

y

y

O

z

r z
x

Fig. 9.21

9.11 Moment of Inertia of a Mass

Photo 9.2 As you will discuss in your dynamics 
course, the rotational behavior of the camshaft 
shown is dependent upon the mass moment of 
inertia of the camshaft with respect to its axis of 
rotation.
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514  Distributed Forces: Moments of Inertia 9.12 PARALLEL-AXIS THEOREM
Consider a body of mass m. Let Oxyz be a system of rectangular coor-
dinates whose origin is at the arbitrary point O, and Gx9y9z9 a system 
of parallel centroidal axes, i.e., a system whose origin is at the center of 
gravity G of the body† and whose axes x9, y9, z9 are parallel to the x, y, 
and z axes, respectively (Fig. 9.22). Denoting by x, y, z the coordinates 
of G with respect to Oxyz, we write the following relations between 
the coordinates x, y, z of the element dm with respect to Oxyz and its 
coordinates x9, y9, z9 with respect to the centroidal axes Gx9y9z9:

 x 5 x9 1 x  y 5 y9 1 y  z 5 z9 1 z (9.31)

Referring to Eqs. (9.30), we can express the moment of inertia of 
the body with respect to the x axis as follows:

 Ix 5 #  (y2 1 z2) dm 5 #  [(y ¿ 1 y )2 1 (z¿ 1 z )2] dm

 5 #  (y ¿2 1 z¿2) dm 1 2 y #  y ¿ dm 1 2z #  z¿  dm 1 (y 
2 1 z 

2) #  dm

The first integral in this expression represents the moment of inertia 
Ix¿ of the body with respect to the centroidal axis x9; the second and 
third integrals represent the first moment of the body with respect 
to the z9x9 and x9y9 planes, respectively, and, since both planes con-
tain G, the two integrals are zero; the last integral is equal to the 
total mass m of the body. We write, therefore,

 Ix 5 Ix¿ 1 m(y 
2 1 z 

2) (9.32)

and, similarly,

 Iy 5 Iy¿ 1 m(z 
2 1 x 

2)   Iz 5 Iz¿ 1 m(x 
2 1 y 

2) (9.329)

 We easily verify from Fig. 9.22 that the sum z 
2 1 x 

2 represents 
the square of the distance OB between the y and y9 axes. Similarly, 
y 

2 1 z 
2 and x 

2 1 y 
2 represent the squares of the distance between 

the x and x9 axes and the z and z9 axes, respectively. Denoting by d 
the distance between an arbitrary axis AA9 and a parallel centroidal 
axis BB9 (Fig. 9.23), we can, therefore, write the following general 
relation between the moment of inertia I of the body with respect 
to AA9 and its moment of inertia I with respect to BB9:

 I 5 I 1 md2 (9.33)

Expressing the moments of inertia in terms of the corresponding 
radii of gyration, we can also write

 k2 5 k2 1 d2 (9.34)

where k and k represent the radii of gyration of the body about AA9 
and BB9, respectively.

†Note that the term centroidal is used here to define an axis passing through the center 
of gravity G of the body, whether or not G coincides with the centroid of the volume of 
the body.

dm

y

O

G

B

z

x

y'

x'

z'

⎯ z⎯ y

⎯ x

Fig. 9.22

A'

B'

A

B

G

d

Fig. 9.23

bee29400_ch09_470-555.indd Page 514 11/26/08 7:13:33 PM user-s173 /Volumes/204/MHDQ076/work%0/indd%0



517

Slender rod
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2
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Fig. 9.28 Mass moments of inertia of common geometric shapes.

9.15 Moments of Inertia of
Composite Bodies
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518

SAMPLE PROBLEM 9.9

Determine the moment of inertia of a slender rod of length L and mass m 
with respect to an axis which is perpendicular to the rod and passes through 
one end of the rod.

SOLUTION

Choosing the differential element of mass shown, we write

dm 5
m
L

 dx

Iy 5 #
 
x2 dm 5 #

L

0
 x

2
 

m
L

 dx 5 c m
L

 
x3

3
d L

0
  Iy 5 1

3 mL2
 ◀

SAMPLE PROBLEM 9.10

For the homogeneous rectangular prism shown, determine the moment of 
inertia with respect to the z axis.

SOLUTION

We choose as the differential element of mass the thin slab shown; thus

dm 5 rbc dx

Referring to Sec. 9.13, we find that the moment of inertia of the element 
with respect to the z9 axis is

dIz¿ 5 1
12 

b2 dm

Applying the parallel-axis theorem, we obtain the mass moment of inertia 
of the slab with respect to the z axis.

dIz 5 dIz¿ 1 x2 dm 5 1
12 

b2 dm 1 x2 dm 5 ( 1
12 

b2 1 x2)rbc dx

Integrating from x 5 0 to x 5 a, we obtain

Iz 5 #  dIz 5 #
a

0
 
( 1

12 
b2 1 x2)rbc dx 5 rabc( 1

12 
b2 1 1

3a2)

Since the total mass of the prism is m 5 rabc, we can write

 Iz 5 m( 1
12 

b2 1 1
3 
a2)

 
 Iz 5 1

12 
m(4a2 1 b2) ◀

We note that if the prism is thin, b is small compared to a, and the expression 
for Iz reduces to 1

3 ma2, which is the result obtained in Sample Prob. 9.9 
when L 5 a.

dx
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SAMPLE PROBLEM 9.11

Determine the moment of inertia of a right circular cone with respect to 
(a) its longitudinal axis, (b) an axis through the apex of the cone and per-
pendicular to its longitudinal axis, (c) an axis through the centroid of the 
cone and perpendicular to its longitudinal axis.

z

y

x

h

a

z

y

x dx

y'

x

h

r a

z

y

x

h

y"

⎯x  =    h3
4

SOLUTION

We choose the differential element of mass shown.

r 5 a 

x
h

  dm 5 rpr2 dx 5 rp  

a2

h2  x2 dx

a. Moment of Inertia Ix. Using the expression derived in Sec. 9.13 for a 
thin disk, we compute the mass moment of inertia of the differential ele-
ment with respect to the x axis.

dIx 5 1
2 
r2 dm 5 1

2 
aa 

x
h

b2arp  

a2

h2  x2 dxb 5 1
2 
rp  

a4

h4  x4 dx

Integrating from x 5 0 to x 5 h, we obtain

Ix 5 #  dIx 5 #
h

0

 12 
rp  

a4

h4  x4 dx 5 1
2 
rp  

a4

h4 
h5

5
5 1

10 
rpa4h

Since the total mass of the cone is m 5 1
3rpa2h, we can write

Ix 5 1
10 
rpa4h 5 3

10 
a2(1

3 
rpa2h) 5 3

10 
ma2   Ix 5 3

10 
ma2 ◀

b. Moment of Inertia Iy. The same differential element is used. Applying 
the parallel-axis theorem and using the expression derived in Sec. 9.13 for 
a thin disk, we write

dIy 5 dIy¿ 1 x2 dm 5 1
4 
r2 dm 1 x2 dm 5 (1

4  
r2 1 x2) dm

Substituting the expressions for r and dm into the equation, we obtain

dIy 5 a1
4

 
a2

h2  x2 1 x2b arp  

a2

h2  x2 dxb 5 rp  

a2

h2 a a2

4h2 1 1b x4 dx

Iy 5 #  dIy 5 #
h

0
 
rp

a2

h2 a a2

4h2 1 1b x4 dx 5 rp
a2

h2 a a2

4h2 1 1b 
h5

5

Introducing the total mass of the cone m, we rewrite Iy as follows:

Iy 5 3
5(1

4 
a2 1 h2)1

3rpa2h   Iy 5 3
5 
m(1

4 
a2 1 h2) ◀

c. Moment of Inertia  I y 0.  We apply the parallel-axis theorem and write

Iy 5 Iy– 1 mx 
2

Solving for Iy– and recalling that x 5 3
4h, we have

Iy– 5 Iy 2 mx 
2 5 3

5 
m(1

4 
a2 1 h2) 2 m(3

4 
h)2

Iy– 5 3
20 

m(a2 1 1
4 
h2) ◀
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14.1 INTRODUCTION
In this chapter you will study the motion of systems of particles, i.e., 
the motion of a large number of particles considered together. The 
first part of the chapter is devoted to systems consisting of well-
defined particles; the second part considers the motion of variable 
systems, i.e., systems which are continually gaining or losing parti-
cles, or doing both at the same time.
 In Sec. 14.2, Newton’s second law will first be applied to each 
particle of the system. Defining the effective force of a particle as 
the product miai of its mass mi and its acceleration ai, we will show 
that the external forces acting on the various particles form a system 
equipollent to the system of the effective forces, i.e., both systems 
have the same resultant and the same moment resultant about any 
given point. In Sec. 14.3, it will be further shown that the resultant 
and moment resultant of the external forces are equal, respectively, 
to the rate of change of the total linear momentum and of the total 
angular momentum of the particles of the system.
 In Sec. 14.4, the mass center of a system of particles is defined 
and the motion of that point is described, while in Sec. 14.5 the 
motion of the particles about their mass center is analyzed. The 
conditions under which the linear momentum and the angular 
momentum of a system of particles are conserved are discussed in 
Sec. 14.6, and the results obtained in that section are applied to the 
solution of various problems.
 Sections 14.7 and 14.8 deal with the application of the work-
energy principle to a system of particles, and Sec. 14.9 with the 
application of the impulse-momentum principle. These sections also 
contain a number of problems of practical interest.
 It should be noted that while the derivations given in the first 
part of this chapter are carried out for a system of independent par-
ticles, they remain valid when the particles of the system are rigidly 
connected, i.e., when they form a rigid body. In fact, the results 
obtained here will form the foundation of our discussion of the kinet-
ics of rigid bodies in Chaps. 16 through 18.
 The second part of this chapter is devoted to the study of variable 
systems of particles. In Sec. 14.11 you will consider steady streams of 
particles, such as a stream of water diverted by a fixed vane, or the flow 
of air through a jet engine, and learn to determine the force exerted by 
the stream on the vane and the thrust developed by the engine. Finally, 
in Sec. 14.12, you will learn how to analyze systems which gain mass 
by continually absorbing particles or lose mass by continually expelling 
particles. Among the various practical applications of this analysis will 
be the determination of the thrust developed by a rocket engine.

14.2  APPLICATION OF NEWTON’S LAWS TO THE 
MOTION OF A SYSTEM OF PARTICLES. 
EFFECTIVE FORCES

In order to derive the equations of motion for a system of n particles, 
let us begin by writing Newton’s second law for each individual par-
ticle of the system. Consider the particle Pi, where 1 # i # n. Let 

Chapter 14 Systems of Particles
 14.1 Introduction
 14.2 Application of Newton’s Laws 

to the Motion of a System of 
Particles. Effective Forces

 14.3 Linear and Angular Momentum 
of a System of Particles

 14.4 Motion of the Mass Center of a 
System of Particles

 14.5 Angular Momentum of a System 
of Particles About Its Mass Center

 14.6 Conservation of Momentum for a 
System of Particles

 14.7 Kinetic Energy of a System of 
Particles

 14.8 Work-Energy Principle. 
Conservation of Energy for a 
System of Particles

 14.9 Principle of Impulse and 
Momentum for a System of 
Particles

 14.10 Variable Systems of Particles
 14.11 Steady Stream of Particles
 14.12 Systems Gaining or Losing Mass
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857mi be the mass of Pi and ai its acceleration with respect to the new-
tonian frame of reference Oxyz. The force exerted on Pi by another 
particle Pj of the system (Fig. 14.1), called an internal force, will be 
denoted by fij. The resultant of the internal forces exerted on Pi by 

all the other particles of the system is thus On

j51
fij (where fii has no

meaning and is assumed to be equal to zero). Denoting, on the other 
hand, by Fi the resultant of all the external forces acting on Pi, we 
write Newton’s second law for the particle Pi as follows:

 
Fi 1 On

j51
fij 5 miai 

(14.1)

Denoting by ri the position vector of Pi and taking the moments 
about O of the various terms in Eq. (14.1), we also write

 
ri 3 Fi 1 On

j51
(ri 3 fij) 5 ri 3 miai 

(14.2)

 Repeating this procedure for each particle Pi of the system, we 
obtain n equations of the type (14.1) and n equations of the type 
(14.2), where i takes successively the values 1, 2, . . . , n. The vectors 
miai are referred to as the effective forces of the particles.† Thus the 
equations obtained express the fact that the external forces Fi and 
the internal forces fij acting on the various particles form a system 
equivalent to the system of the effective forces miai (i.e., one system 
may be replaced by the other) (Fig. 14.2).

=

x

y

z

x

y

z

OO

Pj

Pi
Pi

Fi

ri rif ij

mia i

Fig. 14.1

†Since these vectors represent the resultants of the forces acting on the various 
particles of the system, they can truly be considered as forces.

=

x

y

z

x

y

z

OO

Pi

Pj

Pi

Fi

Fj

riri

rj

f ji

f i j

mia i

Fig. 14.2

 Before proceeding further with our derivation, let us examine 
the internal forces fij. We note that these forces occur in pairs fij, fji, 
where fij represents the force exerted by the particle Pj on the par-
ticle Pi and fji represents the force exerted by Pi on Pj (Fig. 14.2). 
Now, according to Newton’s third law (Sec. 6.1), as extended by 
Newton’s law of gravitation to particles acting at a distance (Sec. 12.10), 
the forces fij and fji are equal and opposite and have the same line of 
action. Their sum is therefore fij 1 fji 5 0, and the sum of their 
moments about O is

ri 3 fij 1 rj 3 fji 5 ri 3 (fij 1 fji) 1 (rj 2 ri) 3 fji 5 0

14.2 Application of Newton’s Laws to the 
Motion of a System of Particles. 

Effective Forces
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858 Systems of Particles since the vectors rj 2 ri and fji in the last term are collinear. Adding 
all the internal forces of the system and summing their moments 
about O, we obtain the equations

 On

i51
On

j51
fij 5 0    On

i51
On

j51
(ri 3 fij) 5 0

 
(14.3)

which express the fact that the resultant and the moment resultant 
of the internal forces of the system are zero.
 Returning now to the n equations (14.1), where i 5 1, 2, . . . , n, 
we sum their left-hand members and sum their right-hand members. 
Taking into account the first of Eqs. (14.3), we obtain

 On

i51
Fi 5 On

i51
miai 

(14.4)

Proceeding similarly with Eqs. (14.2) and taking into account the 
second of Eqs. (14.3), we have

 On

i51
(ri 3 Fi) 5 On

i51
(ri 3 miai) 

(14.5)

 Equations (14.4) and (14.5) express the fact that the system of 
the external forces Fi and the system of the effective forces miai have 
the same resultant and the same moment resultant. Referring to the 
definition given in Sec. 3.19 for two equipollent systems of vectors, 
we can therefore state that the system of the external forces acting 
on the particles and the system of the effective forces of the particles 
are equipollent† (Fig. 14.3).

†The result just obtained is often referred to as d’Alembert’s principle, after the French 
mathematician Jean le Rond d’Alembert (1717–1783). However, d’Alembert’s original 
 statement refers to the motion of a system of connected bodies, with fij representing 
 constraint forces which if applied by themselves will not cause the system to move. Since, 
as it will now be shown, this is in general not the case for the internal forces acting on a 
system of free particles, the consideration of d’Alembert’s principle will be postponed 
until the motion of rigid bodies is considered (Chap. 16).

x x

y y

z z

OO

P2

P3F1

F2

P1

P3
m3a3

m2a2

m1a1

P2

P1

=

Fig. 14.3
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859 Equations (14.3) express the fact that the system of the internal 
forces fij is equipollent to zero. Note, however, that it does not follow 
that the internal forces have no effect on the particles under consid-
eration. Indeed, the gravitational forces that the sun and the planets 
exert on one another are internal to the solar system and equipollent 
to zero. Yet these forces are alone responsible for the motion of the 
planets about the sun.
 Similarly, it does not follow from Eqs. (14.4) and (14.5) that 
two systems of external forces which have the same resultant and the 
same moment resultant will have the same effect on a given system 
of particles. Clearly, the systems shown in Figs. 14.4a and 14.4b have 

=
B B

AA

(a)

(b)

F

F

Fig. 14.4

the same resultant and the same moment resultant; yet the first sys-
tem accelerates particle A and leaves particle B unaffected, while the 
second accelerates B and does not affect A. It is important to recall 
that when we stated in Sec. 3.19 that two equipollent systems of 
forces acting on a rigid body are also equivalent, we specifically 
noted that this property could not be extended to a system of forces 
acting on a set of independent particles such as those considered in 
this chapter.
 In order to avoid any confusion, blue equals signs are used to 
connect equipollent systems of vectors, such as those shown in 
Figs. 14.3 and 14.4. These signs indicate that the two systems of 
vectors have the same resultant and the same moment resultant. Red 
equals signs will continue to be used to indicate that two systems of 
vectors are equivalent, i.e., that one system can actually be replaced 
by the other (Fig. 14.2).

14.3  LINEAR AND ANGULAR MOMENTUM 
OF A SYSTEM OF PARTICLES

Equations (14.4) and (14.5), obtained in the preceding section for 
the motion of a system of particles, can be expressed in a more 
condensed form if we introduce the linear and the angular momen-
tum of the system of particles. Defining the linear momentum L of 
the system of particles as the sum of the linear momenta of the vari-
ous particles of the system (Sec. 12.3), we write

 
L 5 On

i51
mivi 

(14.6)

14.3 Linear and Angular Momentum of a 
System of Particles
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860 Systems of Particles Defining the angular momentum HO about O of the system of par-
ticles in a similar way (Sec. 12.7), we have

 
HO 5 On

i51
(ri 3 mivi) 

(14.7)

 Differentiating both members of Eqs. (14.6) and (14.7) with 
respect to t, we write

 
L
.

5 On

i51
miv̇i 5 On

i51
miai 

(14.8)

and

 H
.

O 5 On

i51
(ṙ i 3 mivi) 1 On

i51
(ri 3 miv̇i)

 5 On

i51
(vi 3 mivi) 1 On

i51
(ri 3 miai)

which reduces to

 
H
.

O 5 On

i51
(ri 3 miai) 

(14.9)

since the vectors vi and mivi are collinear.
 We observe that the right-hand members of Eqs. (14.8) and 
(14.9) are respectively identical with the right-hand members of Eqs. 
(14.4) and (14.5). It follows that the left-hand members of these 
equations are respectively equal. Recalling that the left-hand mem-
ber of Eq. (14.5) represents the sum of the moments MO about O 
of the external forces acting on the particles of the system, and omit-
ting the subscript i from the sums, we write

  ©F 5 L
.

 (14.10)
  ©MO 5 H

.
O (14.11)

These equations express that the resultant and the moment resultant 
about the fixed point O of the external forces are respectively equal 
to the rates of change of the linear momentum and of the angular 
momentum about O of the system of particles.

14.4  MOTION OF THE MASS CENTER
OF A SYSTEM OF PARTICLES

Equation (14.10) may be written in an alternative form if the mass 
center of the system of particles is considered. The mass center of 
the system is the point G defined by the position vector r, which 

bee29400_ch14_854-913.indd Page 860 12/13/08 9:27:48 PM user-s172 /Volumes/204/MHDQ077/work%0/indd%0



861satisfies the relation

 
mr 5 On

i51
miri 

(14.12)

where m represents the total mass On

i51
mi of the particles. Resolving

the position vectors r and ri into rectangular components, we obtain 
the following three scalar equations, which can be used to deter-
mine the coordinates x, y, z of the mass center:

 
mx 5 On

i51
mixi   my 5 On

i51
miyi   mz 5 On

i51
mizi  

(14.129)

 Since mig represents the weight of the particle Pi, and mg the 
total weight of the particles, G is also the center of gravity of the 
system of particles. However, in order to avoid any confusion, G will 
be referred to as the mass center of the system of particles when 
properties associated with the mass of the particles are being dis-
cussed, and as the center of gravity of the system when properties 
associated with the weight of the particles are being considered. Par-
ticles located outside the gravitational field of the earth, for example, 
have a mass but no weight. We can then properly refer to their mass 
center, but obviously not to their center of gravity.†
 Differentiating both members of Eq. (14.12) with respect to t, 
we write

mr
.

5 On

i51
miṙ i

or

 
mv 5 On

i51
mivi 

(14.13)

where v represents the velocity of the mass center G of the system of 
particles. But the right-hand member of Eq. (14.13) is, by definition, 
the linear momentum L of the system (Sec. 14.3). We therefore have

 L 5 mv (14.14)

and, differentiating both members with respect to t,

 L
.

5 ma (14.15)

†It may also be pointed out that the mass center and the center of gravity of a system of 
particles do not exactly coincide, since the weights of the particles are directed toward 
the center of the earth and thus do not truly form a system of parallel forces.

14.4 Motion of the Mass Center of a 
System of Particles
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862 Systems of Particles where a represents the acceleration of the mass center G. Substitut-
ing for L

.
 from (14.15) into (14.10), we write the equation

 oF 5 ma (14.16)

which defines the motion of the mass center G of the system of 
particles.
 We note that Eq. (14.16) is identical with the equation we 
would obtain for a particle of mass m equal to the total mass of 
the particles of the system, acted upon by all the external forces. We 
therefore state that the mass center of a system of particles moves as 
if the entire mass of the system and all the external forces were con-
centrated at that point.
 This principle is best illustrated by the motion of an exploding 
shell. We know that if air resistance is neglected, it can be assumed 
that a shell will travel along a parabolic path. After the shell has 
exploded, the mass center G of the fragments of shell will continue 
to travel along the same path. Indeed, point G must move as if the 
mass and the weight of all fragments were concentrated at G; it must, 
therefore, move as if the shell had not exploded.
 It should be noted that the preceding derivation does not 
involve the moments of the external forces. Therefore, it would be 
wrong to assume that the external forces are equipollent to a vector 
ma attached at the mass center G. This is not in general the case 
since, as you will see in the next section, the sum of the moments 
about G of the external forces is not in general equal to zero.

14.5  ANGULAR MOMENTUM OF A SYSTEM OF 
PARTICLES ABOUT ITS MASS CENTER

In some applications (for example, in the analysis of the motion of 
a rigid body) it is convenient to consider the motion of the particles 
of the system with respect to a centroidal frame of reference Gx9y9z9 
which translates with respect to the newtonian frame of reference 
Oxyz (Fig. 14.5). Although a centroidal frame is not, in general, a 
newtonian frame of reference, it will be seen that the fundamental 
relation (14.11) holds when the frame Oxyz is replaced by Gx9y9z9.
 Denoting, respectively, by r9i and v9i the position vector and the 
velocity of the particle Pi relative to the moving frame of reference 
Gx9y9z9, we define the angular momentum H9G of the system of par-
ticles about the mass center G as follows:

 
H ¿G 5 On

i51
(r¿i 3 miv ¿i) 

(14.17)
 

We now differentiate both members of Eq. (14.17) with respect to t. 
This operation is similar to that performed in Sec. 14.3 on Eq. (14.7), 
and so we write immediately

 
H
.

¿G 5 On

i51
(r¿i 3 mia ¿i)  

(14.18)

Fig. 14.5

x

y

z

O

G x'

y'

z'

Pi
r'i

miv'i
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863where a9i denotes the acceleration of Pi relative to the moving frame 
of reference. Referring to Sec. 11.12, we write

ai 5 a 1 a9i

where ai and a denote, respectively, the accelerations of Pi and G 
relative to the frame Oxyz. Solving for a9i and substituting into (14.18), 
we have

 
H
.

¿G 5 On

i51
(r¿i 3 miai) 2 aOn

i51
mir¿ib 3 a

 
(14.19)

But, by (14.12), the second sum in Eq. (14.19) is equal to mr¿ and 
thus to zero, since the position vector r¿ of G relative to the frame 
Gx9y9z9 is clearly zero. On the other hand, since ai represents the 
acceleration of Pi relative to a newtonian frame, we can use Eq. (14.1) 
and replace miai by the sum of the internal forces fij and of the 
resultant Fi of the external forces acting on Pi. But a reasoning 
 similar to that used in Sec. 14.2 shows that the moment resultant 
about G of the internal forces fij of the entire system is zero. The 
first sum in Eq. (14.19) therefore reduces to the moment resultant 
about G of the external forces acting on the particles of the system, 
and we write

 oMG 5 H
.

¿G (14.20)

which expresses that the moment resultant about G of the external 
forces is equal to the rate of change of the angular momentum about 
G of the system of particles.
 It should be noted that in Eq. (14.17) we defined the angular 
momentum H9G as the sum of the moments about G of the momenta 
of the particles miv9i in their motion relative to the centroidal frame 
of reference Gx9y9z9. We may sometimes want to compute the sum 
HG of the moments about G of the momenta of the particles mivi in 
their absolute motion, i.e., in their motion as observed from the new-
tonian frame of reference Oxyz (Fig. 14.6):

 
HG 5 On

i51
(r¿i 3 mivi) 

(14.21)

Remarkably, the angular momenta H9G and HG are identically equal. 
This can be verified by referring to Sec. 11.12 and writing

 vi 5 v 1 v ¿i  (14.22)

Substituting for vi from (14.22) into Eq. (14.21), we have

HG 5 aOn

i51
mir¿ib 3 v 1 On

i51
(r¿i 3 miv ¿i)

But, as observed earlier, the first sum is equal to zero. Thus HG 
reduces to the second sum, which, by definition, is equal to H9G.†

14.5 Angular Momentum of a System of 
Particles About Its Mass Center

†Note that this property is peculiar to the centroidal frame Gx9y9z9 and does not, in 
general, hold for other frames of reference (see Prob. 14.29).

x

y

z

O

G x'

y'

z'

Pi
r'i

miv'i
mivi

Fig. 14.6
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864 Systems of Particles  Taking advantage of the property we have just established, we 
simplify our notation by dropping the prime (9) from Eq. (14.20) and 
writing

 oMG 5 H
.

G (14.23)

where it is understood that the angular momentum HG can be com-
puted by forming the moments about G of the momenta of the par-
ticles in their motion with respect to either the newtonian frame 
Oxyz or the centroidal frame Gx9y9z9:

 
HG 5 On

i51
(r¿i 3 mivi) 5 On

i51
(r¿i 3 miv ¿i) 

(14.24)

14.6  CONSERVATION OF MOMENTUM
FOR A SYSTEM OF PARTICLES

If no external force acts on the particles of a system, the left-hand 
members of Eqs. (14.10) and (14.11) are equal to zero and these 
equations reduce to L

.
5 0 and H

.
O 5 0. We conclude that

 L 5 constant HO 5 constant (14.25)

The equations obtained express that the linear momentum of the 
system of particles and its angular momentum about the fixed point O 
are conserved.
 In some applications, such as problems involving central forces, 
the moment about a fixed point O of each of the external forces can 
be zero without any of the forces being zero. In such cases, the sec-
ond of Eqs. (14.25) still holds; the angular momentum of the system 
of particles about O is conserved.
 The concept of conservation of momentum can also be applied 
to the analysis of the motion of the mass center G of a system of 
particles and to the analysis of the motion of the system about G. 
For example, if the sum of the external forces is zero, the first of 
Eqs. (14.25) applies. Recalling Eq. (14.14), we write

 v 5 constant (14.26)

which expresses that the mass center G of the system moves in a 
straight line and at a constant speed. On the other hand, if the sum 
of the moments about G of the external forces is zero, it follows from 
Eq. (14.23) that the angular momentum of the system about its mass 
center is conserved:

 HG 5 constant (14.27)

Photo 14.1 If no external forces are acting on 
the two stages of this rocket, the linear and angular 
momentum of the system will be conserved.
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Plane Motion of Rigid Bodies: 
Forces and Accelerations
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 16C H A P T E R
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1026

16.1 INTRODUCTION
In this chapter and in Chaps. 17 and 18, you will study the kinetics 
of rigid bodies, i.e., the relations existing between the forces acting 
on a rigid body, the shape and mass of the body, and the motion 
produced. In Chaps. 12 and 13, you studied similar relations, assum-
ing then that the body could be considered as a particle, i.e., that its 
mass could be concentrated in one point and that all forces acted at 
that point. The shape of the body, as well as the exact location of the 
points of application of the forces, will now be taken into account. 
You will also be concerned not only with the motion of the body as 
a whole but also with the motion of the body about its mass center.
 Our approach will be to consider rigid bodies as made of large 
numbers of particles and to use the results obtained in Chap. 14 for 
the motion of systems of particles. Specifically, two equations from 
Chap. 14 will be used: Eq. (14.16), oF 5 ma, which relates the 
resultant of the external forces and the acceleration of the mass cen-
ter G of the system of particles, and Eq. (14.23), oMG 5 H

.
G, which 

relates the moment resultant of the external forces and the angular 
momentum of the system of particles about G.
 Except for Sec. 16.2, which applies to the most general case of 
the motion of a rigid body, the results derived in this chapter will be 
limited in two ways: (1) They will be restricted to the plane motion 
of rigid bodies, i.e., to a motion in which each particle of the body 
remains at a constant distance from a fixed reference plane. (2) The 
rigid bodies considered will consist only of plane slabs and of bodies 
which are symmetrical with respect to the reference plane.† The 
study of the plane motion of nonsymmetrical three-dimensional bodies 
and, more generally, the motion of rigid bodies in three-dimensional 
space will be postponed until Chap. 18.
 In Sec. 16.3, we define the angular momentum of a rigid body in 
plane motion and show that the rate of change of the angular momen-
tum H

.
G about the mass center is equal to the product IA of the 

centroidal mass moment of inertia I and the angular acceleration A of 
the body. D’Alembert’s principle, introduced in Sec. 16.4, is used to 
prove that the external forces acting on a rigid body are equivalent to a 
vector ma attached at the mass center and a couple of moment IA.
 In Sec. 16.5, we derive the principle of transmissibility using 
only the parallelogram law and Newton’s laws of motion, allowing us 
to remove this principle from the list of axioms (Sec. 1.2) required 
for the study of the statics and dynamics of rigid bodies.
 Free-body-diagram equations are introduced in Sec. 16.6 and 
will be used in the solution of all problems involving the plane motion 
of rigid bodies.
 After considering the plane motion of connected rigid bodies 
in Sec. 16.7, you will be prepared to solve a variety of problems involv-
ing the translation, centroidal rotation, and unconstrained motion of 
rigid bodies. In Sec. 16.8 and in the remaining part of the chapter, 
the solution of problems involving noncentroidal rotation, rolling 
motion, and other partially constrained plane motions of rigid bodies 
will be considered.

†Or, more generally, bodies which have a principal centroidal axis of inertia perpendicular 
to the reference plane.

Chapter 16 Plane Motion of Rigid 
Bodies: Forces and Accelerations

 16.1 Introduction
 16.2 Equations of Motion for a 

Rigid Body
 16.3 Angular Momentum of a Rigid 

Body in Plane Motion
 16.4 Plane Motion of a Rigid Body. 

D’Alembert’s Principle
 16.5 A Remark on the Axioms of the 

Mechanics of Rigid Bodies
 16.6 Solution of Problems Involving 

the Motion of a Rigid Body
 16.7 Systems of Rigid Bodies
 16.8 Constrained Plane Motion
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102716.2 EQUATIONS OF MOTION FOR A RIGID BODY
Consider a rigid body acted upon by several external forces F1, F2, 
F3, . . . (Fig. 16.1). We can assume that the body is made of a large 
number n of particles of mass ¢mi (i 5 1, 2, . . . , n) and apply the 
results obtained in Chap. 14 for a system of particles (Fig. 16.2). 
Considering first the motion of the mass center G of the body with 
respect to the newtonian frame of reference Oxyz, we recall Eq. 
(14.16) and write

 oF 5 ma (16.1)

where m is the mass of the body and a is the acceleration of the mass 
center G. Turning now to the motion of the body relative to the cen-
troidal frame of reference Gx9y9z9, we recall Eq. (14.23) and write

 oMG 5 H
.

G (16.2)

where H
.

G represents the rate of change of HG, the angular momen-
tum about G of the system of particles forming the rigid body. In 
the following, HG will simply be referred to as the angular momen-
tum of the rigid body about its mass center G. Together Eqs. (16.1) 
and (16.2) express that the system of the external forces is equipollent 
to the system consisting of the vector ma attached at G and the couple 
of moment H

.
G (Fig. 16.3).†

16.2 Equations of Motion for a Rigid Body

†Since the systems involved act on a rigid body, we could conclude at this point, by 
referring to Sec. 3.19, that the two systems are equivalent as well as equipollent and 
use red rather than blue equals signs in Fig. 16.3. However, by postponing this 
conclusion, we will be able to arrive at it independently (Secs. 16.4 and 18.5), thereby 
eliminating the necessity of including the principle of transmissibility among the 
axioms of mechanics (Sec. 16.5).

O
x

y

z

F1

F2

F3

F4

G

Fig. 16.1

O

G

x

y

z

x'

y'

z'

Δmi

r'i

Fig. 16.2

F1

F2

F3

F4

HG
.

⎯am

=G G

Fig. 16.3

 Equations (16.1) and (16.2) apply in the most general case of the 
motion of a rigid body. In the rest of this chapter, however, our analysis 
will be limited to the plane motion of rigid bodies, i.e., to a motion in 
which each particle remains at a constant distance from a fixed refer-
ence plane, and it will be assumed that the rigid bodies considered 
consist only of plane slabs and of bodies which are symmetrical with 
respect to the reference plane. Further study of the plane motion of 
nonsymmetrical three-dimensional bodies and of the motion of rigid 
bodies in three-dimensional space will be postponed until Chap. 18.

Photo 16.1 The system of external forces 
acting on the man and wakeboard includes the 
weights, the tension in the tow rope, and the 
forces exerted by the water and the air.
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1028 Plane Motion of Rigid Bodies: 
Forces and Accelerations 16.3  ANGULAR MOMENTUM OF A RIGID BODY 

IN PLANE MOTION
Consider a rigid slab in plane motion. Assuming that the slab is made 
of a large number n of particles Pi of mass ¢mi and recalling 
Eq. (14.24) of Sec. 14.5, we note that the angular momentum HG of 
the slab about its mass center G can be computed by taking the 
moments about G of the momenta of the particles of the slab in their 
motion with respect to either of the frames Oxy or Gx9y9 (Fig. 16.4). 
Choosing the latter course, we write

 
HG 5 On

i51
(r¿i 3 v ¿i  ¢mi)  

(16.3)

where r9i and v9i ¢mi denote, respectively, the position vector and the 
linear momentum of the particle Pi relative to the centroidal frame 
of reference Gx9y9. But since the particle belongs to the slab, we 
have v9i 5 V 3 r9i, where V is the angular velocity of the slab at the 
instant considered. We write

HG 5 On

i51
[r¿i 3 (V 3 r¿i) ¢mi]

Referring to Fig. 16.4, we easily verify that the expression obtained 
represents a vector of the same direction as V (that is, perpendicular 
to the slab) and of magnitude equal to vor9i

2 Dmi. Recalling that the 
sum or9i

2 Dmi represents the moment of inertia I of the slab about 
a centroidal axis perpendicular to the slab, we conclude that the 
angular momentum HG of the slab about its mass center is

 HG 5 IV (16.4)

 Differentiating both members of Eq. (16.4) we obtain

 H
.

G 5 IV̇ 5 IA (16.5)

Thus the rate of change of the angular momentum of the slab is 
represented by a vector of the same direction as A (that is, perpen-
dicular to the slab) and of magnitude Ia.
 It should be kept in mind that the results obtained in this sec-
tion have been derived for a rigid slab in plane motion. As you will 
see in Chap. 18, they remain valid in the case of the plane motion 
of rigid bodies which are symmetrical with respect to the reference 
plane.† However, they do not apply in the case of nonsymmetrical 
bodies or in the case of three-dimensional motion.

O

G

x

y

x'

y'

r'i

Pi

v'i Δmi

w

Fig. 16.4

†Or, more generally, bodies which have a principal centroidal axis of inertia perpendicular 
to the reference plane. 

Photo 16.2 The hard disk and pick-up arms of 
a hard disk computer undergo centroidal rotation.
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SAMPLE PROBLEM 16.2

The thin plate ABCD of mass 8 kg is held in the position shown by the wire 
BH and two links AE and DF. Neglecting the mass of the links, determine 
immediately after wire BH has been cut (a) the acceleration of the plate, 
(b) the force in each link.

SOLUTION

Kinematics of Motion. After wire BH has been cut, we observe that 
 corners A and D move along parallel circles of radius 150 mm centered, 
respectively, at E and F. The motion of the plate is thus a curvilinear 
 translation; the particles forming the plate move along parallel circles of 
radius 150 mm.
 At the instant wire BH is cut, the velocity of the plate is zero. Thus 
the acceleration a of the mass center G of the plate is tangent to the circular 
path which will be described by G.

Equations of Motion. The external forces consist of the weight W and the 
forces FAE and FDF exerted by the links. Since the plate is in translation, 
the effective forces reduce to the vector ma attached at G and directed 
along the t axis. A free-body-diagram equation is drawn to show that the 
system of the external forces is equivalent to the system of the effective 
forces.

a. Acceleration of the Plate.

 1ooFt 5 o(Ft)eff :
 W cos 30° 5 ma
 mg cos 30° 5 ma
 a 5 g cos 30° 5 (9.81 m/s2) cos 30° (1)

a 5 8.50 m/s2 d 60° ◀

b. Forces in Links AE and DF.

 1roFn 5 o(Fn)eff :  FAE 1 FDF 2 W sin 30° 5 0 (2)
 1ioMG 5 o(MG)eff :

(FAE sin 30°)(250 mm) 2 (FAE cos 30°)(100 mm)
1 (FDF sin 30°)(250 mm) 1 (FDF cos 30°)(100 mm) 5 0

38.4FAE 1 211.6FDF 5 0
 FDF 5 20.1815FAE (3)

Substituting for FDF from (3) into (2), we write

FAE 2 0.1815FAE 2 W sin 30° 5 0
 FAE 5 0.6109W

FDF 5 20.1815(0.6109W) 5 20.1109W

Noting that W 5 mg 5 (8 kg)(9.81 m/s2) 5 78.48 N, we have

 FAE 5 0.6109(78.48 N) FAE 5 47.9 N T ◀

FDF 5 20.1109(78.48 N)  FDF 5 8.70 N C ◀

n

n
A

A

B

CD

B

C
D

FAE

FDF

=
⎯am

30°

30°
30°

30°

G

G

W

t

t

250 mm

200 mm

250 mm

100 mm

100 mm

A B

CD

30°

150 mmE

F

H

200 mm

500 mm

30°

A B

C
D

⎯a

30°

60°

E

F

150 mm

30°
G
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SAMPLE PROBLEM 16.3

A pulley weighing 12 lb and having a radius of gyration of 8 in. is connected 
to two blocks as shown. Assuming no axle friction, determine the angular 
acceleration of the pulley and the acceleration of each block.

SOLUTION

Sense of Motion. Although an arbitrary sense of motion can be assumed 
(since no friction forces are involved) and later checked by the sign of the 
answer, we may prefer to determine the actual sense of rotation of the pulley 
first. The weight of block B required to maintain the equilibrium of the 
pulley when it is acted upon by the 5-lb block A is first determined. We 
write

 1loMG 5 0:  WB(6 in.) 2 (5 lb)(10 in.) 5 0  WB 5 8.33 lb

Since block B actually weighs 10 lb, the pulley will rotate counterclockwise.

Kinematics of Motion. Assuming A counterclockwise and noting that
aA 5 rAa and aB 5 rBa, we obtain

aA 5 (10
12 ft)ax  aB 5 ( 6

12 ft)aw

Equations of Motion. A single system consisting of the pulley and the two 
blocks is considered. Forces external to this system consist of the weights 
of the pulley and the two blocks and of the reaction at G. (The forces 
exerted by the cables on the pulley and on the blocks are internal to the 
system considered and cancel out.) Since the motion of the pulley is a cen-
troidal rotation and the motion of each block is a translation, the effective 
forces reduce to the couple IA and the two vectors maA and maB. The 
centroidal moment of inertia of the pulley is

I 5 mk2 5
W
g

 k2 5
12 lb

32.2 ft/s2  ( 8
12 ft)2 5 0.1656 lb ? ft ? s2

Since the system of the external forces is equipollent to the system of the 
effective forces, we write

 1loMG 5 o(MG)eff :

 (10 lb)( 6
12 ft) 2 (5 lb)(10

12 ft) 5 1Ia 1 mBaB( 6
12 ft) 1 mAaA(10

12 ft)

 (10)( 6
12) 2 (5)(10

12) 5 0.1656a 1 10
32.2( 6

12a)( 6
12) 1 5

32.2(10
12a)(10

12)

 a 5 12.374 rad/s2 A 5 2.37 rad/s2 l  ◀

aA 5 rAa 5 (10
12 ft)(2.374 rad/s2)  aA 5  1.978 ft/s2x ◀

aB 5 rBa 5 ( 6
12 ft)(2.374 rad/s2)  aB 5  1.187 ft/s2w ◀

B
A

G

6 in.

10 in.

10 lb

5 lb

B

aB

aA

A

G

a
rB rA

10 lb

12 lb

5 lb

mBaB

mAaA

B
A

G

B
A

G

R

a⎯I
=
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SAMPLE PROBLEM 16.4

A cord is wrapped around a homogeneous disk of radius r 5 0.5 m and 
mass m 5 15 kg. If the cord is pulled upward with a force T of magnitude 
180 N, determine (a) the acceleration of the center of the disk, (b) the 
angular acceleration of the disk, (c) the acceleration of the cord.

SOLUTION

Equations of Motion. We assume that the components ax and ay of the 
acceleration of the center are directed, respectively, to the right and upward 
and that the angular acceleration of the disk is counterclockwise. The exter-
nal forces acting on the disk consist of the weight W and the force T exerted 
by the cord. This system is equivalent to the system of the effective forces, 
which consists of a vector of components max and may attached at G and 
a couple IA. We write

y1 oFx 5 o(Fx)eff :  0 5 max  ax 5 0 ◀

 1xoFy 5 o(Fy)eff :  T 2 W 5 may

 
 ay 5

T 2 W
m

Since T 5 180 N, m 5 15 kg, and W 5 (15 kg)(9.81 m/s2) 5 147.1 N, we 
have

 
ay 5

180 N 2 147.1 N
15 kg

5 12.19 m/s2  ay 5 2.19 m/s2x ◀

1loMG 5 o(MG)eff :  2Tr 5 Ia
  2Tr 5 (1

2 mr2)a

 
a 5 2

2T
mr

5 2
2(180 N)

(15 kg)(0.5 m)
5 248.0 rad/s2

A 5 48.0 rad/s2 i ◀

Acceleration of Cord. Since the acceleration of the cord is equal to the 
tangential component of the acceleration of point A on the disk, we write

 acord 5 (aA) t 5 a 1 (aA/G) t

 5 [2.19 m/s2 x] 1 [(0.5 m)(48 rad/s2)x]
 acord 5 26.2 m/s2 x ◀

A
0.5 m

G

T

⎯ay

⎯a xa

G

T

⎯aym

⎯a xm

r

W

=
a⎯I

G
G

A

⎯a

acord

ar G
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1037

SAMPLE PROBLEM 16.5

A uniform sphere of mass m and radius r is projected along a rough hori-
zontal surface with a linear velocity v0 and no angular velocity. Denoting by 
mk the coefficient of kinetic friction between the sphere and the floor, deter-
mine (a) the time t1 at which the sphere will start rolling without sliding, 
(b) the linear velocity and angular velocity of the sphere at time t1.

SOLUTION

Equations of Motion. The positive sense is chosen to the right for a and 
clockwise for A. The external forces acting on the sphere consist of the 
weight W, the normal reaction N, and the friction force F. Since the point 
of the sphere in contact with the surface is sliding to the right, the friction 
force F is directed to the left. While the sphere is sliding, the magnitude 
of the friction force is F 5 mkN. The effective forces consist of the vector 
ma attached at G and the couple IA. Expressing that the system of the 
external forces is equivalent to the system of the effective forces, we write

 1xoFy 5 o(Fy)eff : N 2 W 5 0
  N 5 W 5 mg   F 5 mkN 5 mkmg

y1 oFx 5 o(Fx)eff : 2F 5 ma     2mkmg 5 ma     a 5 2mkg

 1ioMG 5 o(MG)eff :  Fr 5 Ia

Noting that I 5 2
5 
mr2 and substituting the value obtained for F, we write

(mkmg)r 5 2
5 
mr2a      a 5

5
2

 
mkg

r

Kinematics of Motion. As long as the sphere both rotates and slides, its 
linear and angular motions are uniformly accelerated.

 t 5 0, v 5 v0      
  v 5 v0 1 at 5 v0 2 mkgt (1)

 
t 5 0, v0 5 0     v 5 v0 1 at 5 0 1 a5

2
 
mkg

r
b t

 
(2)

 The sphere will start rolling without sliding when the velocity vC of 
the point of contact C is zero. At that time, t 5 t1, point C becomes the 
instantaneous center of rotation, and we have

 v1 5 rv1 (3)

Substituting in (3) the values obtained for v1 and v1 by making t 5 t1 in 
(1) and (2), respectively, we write

 v0 2 mkgt1 5 r a5
2

 
mkg

r
 t1b

 
t1 5

2
7

 
v0

mkg
 ◀

Substituting for t1 into (2), we have

v1 5
5
2

 
mkg

r
 t1 5

5
2

 
mkg

r
 a2

7
 

v0

mkg
b

     
v1 5

5
7

 
v0

r   
V1 5

5
7

 
v0

r  
i ◀

 v1 5 rv1 5 r a5
7

 
v0

r
b

   
v1 5 5

7 v0  v1 5 5
7 v0y  ◀

⎯v0

G
⎯a

a
r

= ⎯am
G

G
W

N

F

a⎯I

⎯v1

w1

G
C
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1052 Plane Motion of Rigid Bodies: 
Forces and Accelerations 16.8 CONSTRAINED PLANE MOTION

Most engineering applications deal with rigid bodies which are mov-
ing under given constraints. For example, cranks must rotate about 
a fixed axis, wheels must roll without sliding, and connecting rods 
must describe certain prescribed motions. In all such cases, definite 
relations exist between the components of the acceleration a of the 
mass center G of the body considered and its angular acceleration 
A; the corresponding motion is said to be a constrained motion.
 The solution of a problem involving a constrained plane motion 
calls first for a kinematic analysis of the problem. Consider, for exam-
ple, a slender rod AB of length l and mass m whose extremities are 
connected to blocks of negligible mass which slide along horizontal 
and vertical frictionless tracks. The rod is pulled by a force P applied 
at A (Fig. 16.11). We know from Sec. 15.8 that the acceleration a of 
the mass center G of the rod can be determined at any given instant 
from the position of the rod, its angular velocity, and its angular accel-
eration at that instant. Suppose, for example, that the values of u, v, 
and a are known at a given instant and that we wish to determine 
the corresponding value of the force P, as well as the reactions at A 
and B. We should first determine the components ax and ay of the 
acceleration of the mass center G by the method of Sec. 15.8. We 
next apply d’Alembert’s principle (Fig. 16.12), using the expressions 
obtained for ax and ay. The unknown forces P, NA, and NB can then 
be determined by writing and solving the appropriate equations.

⎯ay
(q,w,a)

⎯a x (q,w,a)

A

B

P

a

q

w

l

G

Fig. 16.11

A

B

P

W

NA  

NB

=
⎯a xm

⎯a ym

a⎯I

GG

Fig. 16.12

 Suppose now that the applied force P, the angle u, and the 
angular velocity v of the rod are known at a given instant and that 
we wish to find the angular acceleration a of the rod and the com-
ponents ax and ay of the acceleration of its mass center at that instant, 
as well as the reactions at A and B. The preliminary kinematic study 
of the problem will have for its object to express the components ax 
and ay of the acceleration of G in terms of the angular acceleration 
a of the rod. This will be done by first expressing the acceleration 
of a suitable reference point such as A in terms of the angular accel-
eration a. The components ax and ay of the acceleration of G can 
then be determined in terms of a, and the expressions obtained car-
ried into Fig. 16.12. Three equations can then be derived in terms 
of a, NA, and NB and solved for the three unknowns (see Sample 
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1053Prob. 16.10). Note that the method of dynamic equilibrium can also 
be used to carry out the solution of the two types of problems we 
have considered (Fig. 16.13).
 When a mechanism consists of several moving parts, the 
approach just described can be used with each part of the mecha-
nism. The procedure required to determine the various unknowns is 
then similar to the procedure followed in the case of the equilibrium 
of a system of connected rigid bodies (Sec. 6.11).
 Earlier, we analyzed two particular cases of constrained plane 
motion: the translation of a rigid body, in which the angular accelera-
tion of the body is constrained to be zero, and the centroidal rotation, 
in which the acceleration a of the mass center of the body is con-
strained to be zero. Two other particular cases of constrained plane 
motion are of special interest: the noncentroidal rotation of a rigid 
body and the rolling motion of a disk or wheel. These two cases can 
be analyzed by one of the general methods described above. How-
ever, in view of the range of their applications, they deserve a few 
special comments.

Noncentroidal Rotation. The motion of a rigid body constrained 
to rotate about a fixed axis which does not pass through its mass 
center is called noncentroidal rotation. The mass center G of the 
body moves along a circle of radius r centered at the point O, where 
the axis of rotation intersects the plane of reference (Fig. 16.14). 
Denoting, respectively, by V and A the angular velocity and the 
angular acceleration of the line OG, we obtain the following expres-
sions for the tangential and normal components of the acceleration 
of G:

 at 5 ra   an 5 rv2 (16.7)

Since line OG belongs to the body, its angular velocity V and its 
angular acceleration A also represent the angular velocity and the 
angular acceleration of the body in its motion relative to G. Equa-
tions (16.7) define, therefore, the kinematic relation existing between 
the motion of the mass center G and the motion of the body about 
G. They should be used to eliminate at and an from the equations 
obtained by applying d’Alembert’s principle (Fig. 16.15) or the 
method of dynamic equilibrium (Fig. 16.16).

16.8 Constrained Plane Motion

Fig. 16.13

A

P

NA  

NB

W

⎯a x–m

⎯a y–m

=  0– a⎯I

B

G

O

a

w

⎯r

⎯a t =⎯ra

⎯an =⎯rw2

G

Fig. 16.14 

O
O

=

F1

F2

F3
Ry

R x

(a) (b)

⎯r ⎯a nm

⎯a tm

a

a⎯I
G G

Fig. 16.15

O

F1
F2

F3
Ry

R x

a

=  0– a⎯I ⎯a t–m

⎯a n–m

G

Fig. 16.16 
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1054 Plane Motion of Rigid Bodies: 
Forces and Accelerations

 An interesting relation is obtained by equating the moments 
about the fixed point O of the forces and vectors shown, respectively, 
in parts a and b of Fig. 16.15. We write

1l oMO 5 Ia 1 (mra)r 5 (I 1 mr 2)a

But according to the parallel-axis theorem, we have I 1 mr 
2 5 IO, 

where IO denotes the moment of inertia of the rigid body about the 
fixed axis. We therefore write

 oMO 5 IOa (16.8)

Although formula (16.8) expresses an important relation between the 
sum of the moments of the external forces about the fixed point O 
and the product IOa, it should be clearly understood that this for-
mula does not mean that the system of the external forces is equiva-
lent to a couple of moment IOa. The system of the effective forces, 
and thus the system of the external forces, reduces to a couple only 
when O coincides with G—that is, only when the rotation is centroi-
dal (Sec. 16.4). In the more general case of noncentroidal rotation, 
the system of the external forces does not reduce to a couple.
 A particular case of noncentroidal rotation is of special interest—
the case of uniform rotation, in which the angular velocity V is con-
stant. Since A is zero, the inertia couple in Fig. 16.16 vanishes and 
the inertia vector reduces to its normal component. This component 
(also called centrifugal force) represents the tendency of the rigid 
body to break away from the axis of rotation.

Rolling Motion. Another important case of plane motion is the 
motion of a disk or wheel rolling on a plane surface. If the disk is 
constrained to roll without sliding, the acceleration a of its mass 
center G and its angular acceleration A are not independent. Assum-
ing that the disk is balanced, so that its mass center and its geometric 
center coincide, we first write that the distance x traveled by G dur-
ing a rotation u of the disk is x 5 ru, where r is the radius of the 
disk. Differentiating this relation twice, we write

 a 5 ra (16.9)

O
O

=

F1

F2

F3
Ry

R x

(a) (b)

⎯r ⎯a nm

⎯a tm

a

a⎯I
G G

Fig. 16.15 (repeated)

O

F1
F2

F3
Ry

R x

a

=  0– a⎯I ⎯a t–m

⎯a n–m

G

Fig. 16.16 (repeated)
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1055 Recalling that the system of the effective forces in plane motion 
reduces to a vector ma and a couple IA, we find that in the particular 
case of the rolling motion of a balanced disk, the effective forces 
reduce to a vector of magnitude mra attached at G and to a couple 
of magnitude Ia. We may thus express that the external forces are 
equivalent to the vector and couple shown in Fig. 16.17.
 When a disk rolls without sliding, there is no relative motion 
between the point of the disk in contact with the ground and the 
ground itself. Thus as far as the computation of the friction force F 
is concerned, a rolling disk can be compared with a block at rest on 
a surface. The magnitude F of the friction force can have any value, 
as long as this value does not exceed the maximum value Fm 5 msN, 
where ms is the coefficient of static friction and N is the magnitude 
of the normal force. In the case of a rolling disk, the magnitude F of 
the friction force should therefore be determined independently of N 
by solving the equation obtained from Fig. 16.17.
 When sliding is impending, the friction force reaches its maxi-
mum value Fm 5 msN and can be obtained from N.
 When the disk rotates and slides at the same time, a relative 
motion exists between the point of the disk which is in contact with 
the ground and the ground itself, and the force of friction has the 
magnitude Fk 5 mkN, where mk is the coefficient of kinetic friction. 
In this case, however, the motion of the mass center G of the disk 
and the rotation of the disk about G are independent, and a is not 
equal to ra.
 These three different cases can be summarized as follows:

Rolling, no sliding: F # msN   a 5 ra
Rolling, sliding impending: F 5 msN   a 5 ra
Rotating and sliding: F 5 mkN   a and a independent

When it is not known whether or not a disk slides, it should first be 
assumed that the disk rolls without sliding. If F is found smaller than 
or equal to msN, the assumption is proved correct. If F is found larger 
than msN, the assumption is incorrect and the problem should be 
started again, assuming rotating and sliding.
 When a disk is unbalanced, i.e., when its mass center G does 
not coincide with its geometric center O, the relation (16.9) does not 
hold between a and a. However, a similar relation holds between 
the magnitude aO of the acceleration of the geometric center and 
the angular acceleration a of an unbalanced disk which rolls without 
sliding. We have

 aO 5 ra (16.10)

To determine a in terms of the angular acceleration a and the angular 
velocity v of the disk, we can use the relative-acceleration formula

 a 5 aG 5 aO 1 aG/O
 5 aO 1 (aG/O) t 1 (aG/O)n (16.11)

where the three component accelerations obtained have the direc-
tions indicated in Fig. 16.18 and the magnitudes aO 5 ra, (aG/O)t 5 
(OG)a, and (aG/O)n 5 (OG)v2.

16.8 Constrained Plane Motion

N

F

=
a⎯I

W

P

CC

G
G

ma (a = ra)

Fig. 16.17

O

C

aO

aO (aG/O)n

(aG/O)t

G

Fig. 16.18

Photo 16.4 As the ball hits the bowling alley, 
it first spins and slides, then rolls without sliding.
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1058

SAMPLE PROBLEM 16.8

A sphere of radius r and weight W is released with no initial velocity on 
the incline and rolls without slipping. Determine (a) the minimum value of 
the coefficient of static friction compatible with the rolling motion, (b) the 
velocity of the center G of the sphere after the sphere has rolled 10 ft, 
(c) the velocity of G if the sphere were to move 10 ft down a frictionless 
30° incline.

SOLUTION

a. Minimum Ms for Rolling Motion. The external forces W, N, and F form 
a system equivalent to the system of effective forces represented by the vector 
ma and the couple IA. Since the sphere rolls without sliding, we have a 5 ra.

1ioMC 5 o(MC)eff :  (W sin u)r 5 (ma)r 1 Ia
(W sin u)r 5 (mra)r 1 Ia

Noting that m 5 W/g and I 5 2
5 mr2, we write

 (W sin u)r 5 aW
g

 rab r 1
2
5

 
W
g

 r2a     a 5 1
5g sin u

7r

 a 5 ra 5
5g sin u

7
5

5(32.2 ft/s2) sin 30°
7

5 11.50 ft /s2

1qoFx 5 o(Fx)eff :  W sin u 2 F 5 ma

W sin u 2 F 5
W
g

 
5g sin u

7
F 5 12

7W sin u 5 2
7W sin 30°   F 5 0.143W b 30°

1poFy 5 o(Fy)eff :  N 2 W cos u 5 0
N 5 W cos u 5 0.866W   N 5 0.866W a 60°

 
ms 5

F
N

5
0.143W
0.866W  

ms 5 0.165 ◀

b. Velocity of Rolling Sphere. We have uniformly accelerated motion:

 v0 5 0    a 5 11.50 ft/s2    x 5 10 ft    x0 5 0
 v2 5 v2

0 1 2a(x 2 x0)    v2 5 0 1 2(11.50 ft/s2)(10 ft)
 v 5 15.17 ft/s v 5 15.17 ft/s c 30° ◀

c. Velocity of Sliding Sphere. Assuming now no friction, we have F 5 0 
and obtain

1ioMG 5 o(MG)eff :    0 5 Ia     a 5 0

1qoFx 5 o(Fx)eff :    W sin 30° 5 ma     0.50W 5 
W
g

 a

a 5 116.1 ft/s2     a 5 16.1 ft/s2 c 30°

Substituting a 5 16.1 ft/s2 into the equations for uniformly accelerated 
motion, we obtain

v2 5 v2
0 1 2a(x 2 x0)   v2 5 0 1 2(16.1 ft/s2)(10 ft)

 v 5 17.94 ft/s v 5 17.94 ft/s c 30° ◀

q = 30°

r
G

C

= ⎯am

a⎯I

C

C

G
G

xx

yy

W

N

F
q

⎯a

a
G

C

r
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1060

SAMPLE PROBLEM 16.10

The extremities of a 4-ft rod weighing 50 lb can move freely and with no 
friction along two straight tracks as shown. If the rod is released with no 
velocity from the position shown, determine (a) the angular acceleration of 
the rod, (b) the reactions at A and B.

SOLUTION

Kinematics of Motion. Since the motion is constrained, the acceleration 
of G must be related to the angular acceleration A. To obtain this relation, 
we first determine the magnitude of the acceleration aA of point A in terms 
of a. Assuming that A is directed counterclockwise and noting that aB/A 5 
4a, we write

aB 5 aA 1 aB/A

[aB c 45°] 5 [aA y] 1 [4a d 60°]

Noting that f 5 75° and using the law of sines, we obtain

aA 5 5.46a    aB 5 4.90a

The acceleration of G is now obtained by writing

a 5 aG 5 aA 1 aG/A

a 5 [5.46a y] 1 [2a d 60°]

Resolving a into x and y components, we obtain

 ax 5 5.46a 2 2a cos 60° 5 4.46a    ax 5 4.46a y
 ay 5 22a sin 60° 5 21.732a        ay 5 1.732aw

Kinetics of Motion. We draw a free-body-diagram equation expressing that 
the system of the external forces is equivalent to the system of the effective 
forces represented by the vector of components max and may attached at G 
and the couple IA. We compute the following magnitudes:

I 5 1
12ml2 5

1
12

 
50 lb

32.2 ft/s2  (4 ft)2 5 2.07 lb ? ft ? s2      Ia 5 2.07a

max 5
50

32.2
 (4.46a) 5 6.93a     may 5 2

50
32.2

(1.732a) 5 22.69a

Equations of Motion

1loME 5 o(ME)eff :
(50)(1.732) 5 (6.93a)(4.46) 1 (2.69a)(1.732) 1 2.07a

a 5 12.30 rad/s2    A 5 2.30 rad/s2 l ◀

y1 oFx 5 o(Fx)eff :    RB sin 45° 5 (6.93)(2.30) 5 15.94
RB 5 22.5 lb    RB 5 22.5 lb a 45° ◀

1xoFy 5 o(Fy)eff : RA 1 RB cos 45° 2 50 5 2(2.69)(2.30)
RA 5 26.19 2 15.94 1 50 5 27.9 lb    RA 5 27.9 lbx ◀

=

⎯aym

⎯axm
a⎯I

45°

45°

EE

50 lb

1.732 ft1.732 ft 1.732 ft

1 ft

RA

RB

4.46 ft

⎯a

⎯a

a

ay⎯

ax⎯

aB

aA

aA

aA

aB/A

aG/A

aB

45° 60°

60°

f

b

G

A

B

G

A

B

D

b = 45° 30°

4 ft
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