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15.1 INTRODUCTION
In this chapter, the kinematics of rigid bodies will be considered. You 
will investigate the relations existing between the time, the positions, 
the velocities, and the accelerations of the various particles forming 
a rigid body. As you will see, the various types of rigid-body motion 
can be conveniently grouped as follows:

Chapter 15 Kinematics of 
Rigid Bodies

 15.1 Introduction
 15.2 Translation
 15.3 Rotation about a Fixed Axis
 15.4 Equations Defining the Rotation 

of a Rigid Body about a 
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in Plane Motion
 15.7 Instantaneous Center of Rotation 

in Plane Motion
 15.8 Absolute and Relative 

Acceleration in Plane Motion
 15.9 Analysis of Plane Motion in 
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 15.10 Rate of Change of a Vector with 

Respect to a Rotating Frame
 15.11 Plane Motion of a Particle 

Relative to a Rotating Frame. 
Coriolis Acceleration

 15.12 Motion about a Fixed Point
 15.13 General Motion
 15.14 Three-Dimensional Motion of a 
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 1. Translation. A motion is said to be a translation if any straight 
line inside the body keeps the same direction during the motion. 
It can also be observed that in a translation all the particles 
forming the body move along parallel paths. If these paths are 
straight lines, the motion is said to be a rectilinear translation 
(Fig. 15.1); if the paths are curved lines, the motion is a curvi-
linear translation (Fig. 15.2).

 2. Rotation about a Fixed Axis. In this motion, the particles form-
ing the rigid body move in parallel planes along circles centered 
on the same fixed axis (Fig. 15.3). If this axis, called the axis of 
rotation, intersects the rigid body, the particles located on the 
axis have zero velocity and zero acceleration.

   Rotation should not be confused with certain types of cur-
vilinear translation. For example, the plate shown in Fig. 15.4a 
is in curvilinear translation, with all its particles moving along 
parallel circles, while the plate shown in Fig. 15.4b is in rota-
tion, with all its particles moving along concentric circles.
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917  In the first case, any given straight line drawn on the plate 
will maintain the same direction, whereas in the second case, 
point O remains fixed.

   Because each particle moves in a given plane, the rotation 
of a body about a fixed axis is said to be a plane motion.

 3. General Plane Motion. There are many other types of plane 
motion, i.e., motions in which all the particles of the body move 
in parallel planes. Any plane motion which is neither a rotation 
nor a translation is referred to as a general plane motion. Two 
examples of general plane motion are given in Fig. 15.5.

(a) Rolling wheel (b) Sliding rod

Fig. 15.5

 4. Motion about a Fixed Point. The three-dimensional motion of 
a rigid body attached at a fixed point O, e.g., the motion of a 
top on a rough floor (Fig. 15.6), is known as motion about a 
fixed point.

 5. General Motion. Any motion of a rigid body which does not 
fall in any of the categories above is referred to as a general 
motion.

 After a brief discussion in Sec. 15.2 of the motion of translation, 
the rotation of a rigid body about a fixed axis is considered in Sec. 
15.3. The angular velocity and the angular acceleration of a rigid 
body about a fixed axis will be defined, and you will learn to express 
the velocity and the acceleration of a given point of the body in terms 
of its position vector and the angular velocity and angular accelera-
tion of the body.
 The following sections are devoted to the study of the general 
plane motion of a rigid body and to its application to the analysis of 
mechanisms such as gears, connecting rods, and pin-connected link-
ages. Resolving the plane motion of a slab into a translation and a 
rotation (Secs. 15.5 and 15.6), we will then express the velocity of a 
point B of the slab as the sum of the velocity of a reference point A 
and of the velocity of B relative to a frame of reference translating 
with A (i.e., moving with A but not rotating). The same approach is 
used later in Sec. 15.8 to express the acceleration of B in terms of 
the acceleration of A and of the acceleration of B relative to a frame 
translating with A.

Fig. 15.6

O

15.1 Introduction
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918 Kinematics of Rigid Bodies  An alternative method for the analysis of velocities in plane 
motion, based on the concept of instantaneous center of rotation, is 
given in Sec. 15.7; and still another method of analysis, based on the 
use of parametric expressions for the coordinates of a given point, is 
presented in Sec. 15.9.
 The motion of a particle relative to a rotating frame of refer-
ence and the concept of Coriolis acceleration are discussed in Secs. 
15.10 and 15.11, and the results obtained are applied to the analysis 
of the plane motion of mechanisms containing parts which slide on 
each other.
 The remaining part of the chapter is devoted to the analysis of 
the three-dimensional motion of a rigid body, namely, the motion of 
a rigid body with a fixed point and the general motion of a rigid body. 
In Secs. 15.12 and 15.13, a fixed frame of reference or a frame of 
reference in translation will be used to carry out this analysis; in Secs. 
15.14 and 15.15, the motion of the body relative to a rotating frame 
or to a frame in general motion will be considered, and the concept 
of Coriolis acceleration will again be used.

15.2 TRANSLATION
Consider a rigid body in translation (either rectilinear or curvilinear 
translation), and let A and B be any two of its particles (Fig. 15.7a). 
Denoting, respectively, by rA and rB the position vectors of A and B 
with respect to a fixed frame of reference and by rB/A the vector 
joining A and B, we write

 rB 5 rA 1 rB/A (15.1)

Let us differentiate this relation with respect to t. We note that from 
the very definition of a translation, the vector rB/A must maintain a 
constant direction; its magnitude must also be constant, since A and B 
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Photo 15.1 This replica of a battering ram at 
Château des Baux, France undergoes curvilinear 
translation.
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919belong to the same rigid body. Thus, the derivative of rB/A is zero 
and we have

 vB 5 vA (15.2)

Differentiating once more, we write

 aB 5 aA (15.3)

 Thus, when a rigid body is in translation, all the points of the 
body have the same velocity and the same acceleration at any given 
instant (Fig. 15.7b and c). In the case of curvilinear translation, the 
velocity and acceleration change in direction as well as in magnitude 
at every instant. In the case of rectilinear translation, all particles of 
the body move along parallel straight lines, and their velocity and 
acceleration keep the same direction during the entire motion.

15.3 ROTATION ABOUT A FIXED AXIS
Consider a rigid body which rotates about a fixed axis AA9. Let P be 
a point of the body and r its position vector with respect to a fixed 
frame of reference. For convenience, let us assume that the frame is 
centered at point O on AA9 and that the z axis coincides with AA9 
(Fig. 15.8). Let B be the projection of P on AA9; since P must remain 
at a constant distance from B, it will describe a circle of center B and 
of radius r sin f, where f denotes the angle formed by r and AA9.
 The position of P and of the entire body is completely defined 
by the angle u the line BP forms with the zx plane. The angle u is 
known as the angular coordinate of the body and is defined as posi-
tive when viewed as counterclockwise from A9. The angular coordi-
nate will be expressed in radians (rad) or, occasionally, in degrees (°) 
or revolutions (rev). We recall that

1 rev 5 2p rad 5 360°

 We recall from Sec. 11.9 that the velocity v 5 dr/dt of a particle 
P is a vector tangent to the path of P and of magnitude v 5 ds/dt. 
Observing that the length Ds of the arc described by P when the 
body rotates through Du is

Ds 5 (BP) Du 5 (r sin f) Du

and dividing both members by Dt, we obtain at the limit, as Dt 
approaches zero,

 
v 5

ds
dt

5 ru
.

 sin f
 

(15.4)

where u̇ denotes the time derivative of u. (Note that the angle u 
depends on the position of P within the body, but the rate of change 
u̇ is itself independent of P.) We conclude that the velocity v of P is 
a vector perpendicular to the plane containing AA9 and r, and of 

15.3 Rotation about a Fixed Axis

Fig. 15.8
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Photo 15.2 For the central gear rotating about 
a fixed axis, the angular velocity and angular 
acceleration of that gear are vectors directed 
along the vertical axis of rotation.
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920 Kinematics of Rigid Bodies magnitude v defined by (15.4). But this is precisely the result we 
would obtain if we drew along AA9 a vector V 5 u̇k and formed the 
vector product V 3 r (Fig. 15.9). We thus write

 
v 5

dr
dt

5 V 3 r
 

(15.5)

The vector

 V 5 vk 5 u̇k (15.6)

which is directed along the axis of rotation, is called the angular 
velocity of the body and is equal in magnitude to the rate of change 
u̇  of the angular coordinate; its sense may be obtained by the right-
hand rule (Sec. 3.6) from the sense of rotation of the body.†
 The acceleration a of the particle P will now be determined. 
Differentiating (15.5) and recalling the rule for the differentiation of 
a vector product (Sec. 11.10), we write

 a 5
dv
dt

5
d
dt

 (V 3 r)

 5
dV
dt

3 r 1 V 3
dr
dt

 
 5

dV
dt

3 r 1 V 3 v
 

(15.7)

The vector dV/dt is denoted by A and is called the angular accelera-
tion of the body. Substituting also for v from (15.5), we have

 a 5 A 3 r 1 V 3 (V 3 r) (15.8)

Differentiating (15.6) and recalling that k is constant in magnitude 
and direction, we have

 A 5 ak 5 v̇k 5 ük (15.9)

Thus, the angular acceleration of a body rotating about a fixed axis 
is a vector directed along the axis of rotation, and is equal in magni-
tude to the rate of change v̇ of the angular velocity. Returning to 
(15.8), we note that the acceleration of P is the sum of two vectors. 
The first vector is equal to the vector product A 3 r; it is tangent 
to the circle described by P and therefore represents the tangential 
component of the acceleration. The second vector is equal to the 
vector triple product V 3 (V 3 r) obtained by forming the vector 
product of V and V 3 r; since V 3 r is tangent to the circle described 
by P, the vector triple product is directed toward the center B of 
the circle and therefore represents the normal component of the 
acceleration.

†It will be shown in Sec. 15.12 in the more general case of a rigid body rotating 
 simultaneously about axes having different directions that angular velocities obey 
the parallelogram law of addition and thus are actually vector quantities.

Fig. 15.9
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921Rotation of a Representative Slab. The rotation of a rigid body 
about a fixed axis can be defined by the motion of a representative 
slab in a reference plane perpendicular to the axis of rotation. Let 
us choose the xy plane as the reference plane and assume that it 
coincides with the plane of the figure, with the z axis pointing out 
of the paper (Fig. 15.10). Recalling from (15.6) that V 5 vk, we 

Fig. 15.11
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Fig. 15.10
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note that a positive value of the scalar v corresponds to a counter-
clockwise rotation of the representative slab, and a negative value to 
a clockwise rotation. Substituting vk for V into Eq. (15.5), we express 
the velocity of any given point P of the slab as

 v 5 vk 3 r (15.10)

Since the vectors k and r are mutually perpendicular, the magnitude 
of the velocity v is

 v 5 rv (15.109)

and its direction can be obtained by rotating r through 90° in the 
sense of rotation of the slab.
 Substituting V 5 vk and A 5 ak into Eq. (15.8), and observing 
that cross-multiplying r twice by k results in a 180° rotation of the 
vector r, we express the acceleration of point P as

 a 5 ak 3 r 2 v2r (15.11)

Resolving a into tangential and normal components (Fig. 15.11), we 
write

 at 5 ak 3 r  at 5 ra (15.119)
 an 5 2v2r an 5 rv2

The tangential component at points in the counterclockwise direc-
tion if the scalar a is positive, and in the clockwise direction if a is 
negative. The normal component an always points in the direction 
opposite to that of r, that is, toward O.

15.3 Rotation about a Fixed Axis
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922 Kinematics of Rigid Bodies 15.4  EQUATIONS DEFINING THE ROTATION OF A 
RIGID BODY ABOUT A FIXED AXIS

The motion of a rigid body rotating about a fixed axis AA9 is said to 
be known when its angular coordinate u can be expressed as a known 
function of t. In practice, however, the rotation of a rigid body is 
seldom defined by a relation between u and t. More often, the condi-
tions of motion will be specified by the type of angular acceleration 
that the body possesses. For example, a may be given as a function 
of t, as a function of u, or as a function of v. Recalling the relations 
(15.6) and (15.9), we write

 
v 5

du
dt  

(15.12)

 
a 5

dv
dt

5
d2u

dt2  
(15.13)

or, solving (15.12) for dt and substituting into (15.13),

 
a 5 v  

dv
du  

(15.14)

Since these equations are similar to those obtained in Chap. 11 for 
the rectilinear motion of a particle, their integration can be per-
formed by following the procedure outlined in Sec. 11.3.
 Two particular cases of rotation are frequently encountered:

 1. Uniform Rotation. This case is characterized by the fact that 
the angular acceleration is zero. The angular velocity is thus 
constant, and the angular coordinate is given by the formula

 u 5 u0 1 vt (15.15)

 2. Uniformly Accelerated Rotation. In this case, the angular accel-
eration is constant. The following formulas relating angular 
velocity, angular coordinate, and time can then be derived in a 
manner similar to that described in Sec. 11.5. The similarity 
between the formulas derived here and those obtained for 
the rectilinear uniformly accelerated motion of a particle is 
apparent.

 v 5 v0 1 at
 u 5 u0 1 v0t 1 1

2at2 (15.16)
 v2 5 v2

0 1 2a(u 2 u0)

It should be emphasized that formula (15.15) can be used only when 
a 5 0, and formulas (15.16) can be used only when a 5 constant. 
In any other case, the general formulas (15.12) to (15.14) should 
be used.

Photo 15.3 If the lower roll has a constant 
angular velocity, the speed of the paper being 
wound onto it increases as the radius of the roll 
increases.
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 *15.36 In a continuous printing process, paper is drawn into the presses 
at a constant speed v. Denoting by r the radius of the paper roll 
at any given time and by b the thickness of the paper, derive an 
expression for the angular acceleration of the paper roll.

 *15.37 Television recording tape is being rewound on a VCR reel which 
rotates with a constant angular velocity v0. Denoting by r the 
radius of the reel and tape at any given time and by b the thickness 
of the tape, derive an expression for the acceleration of the tape 
as it approaches the reel.

932 Kinematics of Rigid Bodies

15.5 GENERAL PLANE MOTION
As indicated in Sec. 15.1, we understand by general plane motion a 
plane motion which is neither a translation nor a rotation. As you 
will presently see, however, a general plane motion can always be 
considered as the sum of a translation and a rotation.
 Consider, for example, a wheel rolling on a straight track 
(Fig. 15.12). Over a certain interval of time, two given points A and B 
will have moved, respectively, from A1 to A2 and from B1 to B2. The 
same result could be obtained through a translation which would 
bring A and B into A2 and B91 (the line AB remaining vertical), fol-
lowed by a rotation about A bringing B into B2. Although the original 
rolling motion differs from the combination of translation and rota-
tion when these motions are taken in succession, the original motion 
can be exactly duplicated by a combination of simultaneous transla-
tion and rotation.

Fig. 15.12

= +

Plane motion = +Translation with A Rotation about A

A1 A1 A2
A2

A2

B1 B1
B'1

B'1

B2 B2
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933

 Another example of plane motion is given in Fig. 15.13, which 
represents a rod whose extremities slide along a horizontal and a verti-
cal track, respectively. This motion can be replaced by a translation in 
a horizontal direction and a rotation about A (Fig. 15.13a) or by a 
translation in a vertical direction and a rotation about B (Fig. 15.13b).
 In the general case of plane motion, we will consider a small 
displacement which brings two particles A and B of a representative 
slab, respectively, from A1 and B1 into A2 and B2 (Fig. 15.14). This 
displacement can be divided into two parts: in one, the particles 
move into A2 and B91 while the line AB maintains the same direction; 
in the other, B moves into B2 while A remains fixed. The first part 
of the motion is clearly a translation and the second part a rotation 
about A.
 Recalling from Sec. 11.12 the definition of the relative motion 
of a particle with respect to a moving frame of reference—as opposed 
to its absolute motion with respect to a fixed frame of reference—we 
can restate as follows the result obtained above: Given two particles 
A and B of a rigid slab in plane motion, the relative motion of B with 
respect to a frame attached to A and of fixed orientation is a rotation. 
To an observer moving with A but not rotating, particle B will appear 
to describe an arc of circle centered at A.

15.5 General Plane Motion

Fig. 15.13

A2A1
A2 A2A1

B1 B1
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934 Kinematics of Rigid Bodies 15.6  ABSOLUTE AND RELATIVE VELOCITY 
IN PLANE MOTION

We saw in the preceding section that any plane motion of a slab can 
be replaced by a translation defined by the motion of an arbitrary 
reference point A and a simultaneous rotation about A. The absolute 
velocity vB of a particle B of the slab is obtained from the relative-
velocity formula derived in Sec. 11.12,

 vB 5 vA 1 vB/A (15.17)

where the right-hand member represents a vector sum. The velocity 
vA corresponds to the translation of the slab with A, while the relative 
velocity vB/A is associated with the rotation of the slab about A and 
is measured with respect to axes centered at A and of fixed orienta-
tion (Fig. 15.15). Denoting by rB/A the position vector of B relative 
to A, and by vk the angular velocity of the slab with respect to axes 
of fixed orientation, we have from (15.10) and (15.109)

 vB/A 5 vk 3 rB/A  vB/A 5 rv (15.18)

Fig. 15.15

= +

Plane motion = Translation with A + Rotation about A

A

B

A

B B

vA

vA

vA

vB

vA
vB

x'

y'

wk

rB/A

vB/A

vB/A

vB = vA + vB/A

A
(fixed)

where r is the distance from A to B. Substituting for vB/A from (15.18) 
into (15.17), we can also write

 vB 5 vA 1 vk 3 rB/A (15.179)

 As an example, let us again consider the rod AB of Fig. 15.13. 
Assuming that the velocity vA of end A is known, we propose to find 
the velocity vB of end B and the angular velocity V of the rod, in terms 
of the velocity vA, the length l, and the angle u. Choosing A as a refer-
ence point, we express that the given motion is equivalent to a transla-
tion with A and a simultaneous rotation about A (Fig. 15.16). The 
absolute velocity of B must therefore be equal to the vector sum

 vB 5 vA 1 vB/A (15.17)

We note that while the direction of vB/A is known, its magnitude lv 
is unknown. However, this is compensated for by the fact that the 
direction of vB is known. We can therefore complete the diagram of 
Fig. 15.16. Solving for the magnitudes vB and v, we write

 
vB 5 vA tan u   v 5

vB/A

l
5

vA

l cos u  
(15.19)

Photo 15.4 Planetary gear systems are used 
to high reduction ratios with minimum space and 
weight. The small gears undergo general plane 
motion.
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935

 The same result can be obtained by using B as a point of refer-
ence. Resolving the given motion into a translation with B and a 
simultaneous rotation about B (Fig. 15.17), we write the equation

 vA 5 vB 1 vA/B (15.20)

which is represented graphically in Fig. 15.17. We note that vA/B and 
vB/A have the same magnitude lv but opposite sense. The sense of 
the relative velocity depends, therefore, upon the point of reference 
which has been selected and should be carefully ascertained from 
the appropriate diagram (Fig. 15.16 or 15.17).

Plane motion = Translation with A + Rotation about A

= +

A
A

BBB

vA

vA

vAvA

vB

vB

vB/A

vB/A

vB = vA + vB/A

A (fixed)

lll
q

q

w

q
q

Fig. 15.16

Fig. 15.17

Plane motion
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B

vA

vB

vA

vA/B

l
q=

= Translation with B

A

B

l

+ Rotation about B

+
vA/B

A

B (fixed)

l

w

vA = vB + vA/B

vB

q vB

q

vB

 Finally, we observe that the angular velocity V of the rod in its 
rotation about B is the same as in its rotation about A. It is measured 
in both cases by the rate of change of the angle u. This result is quite 
general; we should therefore bear in mind that the angular velocity V 
of a rigid body in plane motion is independent of the reference point.
 Most mechanisms consist not of one but of several moving 
parts. When the various parts of a mechanism are pin-connected, the 
analysis of the mechanism can be carried out by considering each 
part as a rigid body, keeping in mind that the points where two parts 
are connected must have the same absolute velocity (see Sample 
Prob. 15.3). A similar analysis can be used when gears are involved, 
since the teeth in contact must also have the same absolute velocity. 
However, when a mechanism contains parts which slide on each 
other, the relative velocity of the parts in contact must be taken into 
account (see Secs. 15.10 and 15.11).

15.6 Absolute and Relative Velocity in 
Plane Motion
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 15.71 The 80-mm-radius wheel shown rolls to the left with a velocity of 
900 mm/s. Knowing that the distance AD is 50 mm, determine 
the velocity of the collar and the angular velocity of rod AB when 
(a) b 5 0, (b) b 5 90°.

 *15.72 For the gearing shown, derive an expression for the angular veloc-
ity vC of gear C and show that vC is independent of the radius of 
gear B. Assume that point A is fixed and denote the angular veloci-
ties of rod ABC and gear A by vABC and vA respectively.

A

B

250 mm
D80 mm

b

160 mm

Fig. P15.71

A

B

C

rA

rB

rC

Fig. P15.72

15.7  INSTANTANEOUS CENTER OF ROTATION 
IN PLANE MOTION

Consider the general plane motion of a slab. We propose to show 
that at any given instant the velocities of the various particles of the 
slab are the same as if the slab were rotating about a certain axis 
perpendicular to the plane of the slab, called the instantaneous axis 
of rotation. This axis intersects the plane of the slab at a point C, 
called the instantaneous center of rotation of the slab.
 We first recall that the plane motion of a slab can always be 
replaced by a translation defined by the motion of an arbitrary refer-
ence point A and by a rotation about A. As far as the velocities are 
concerned, the translation is characterized by the velocity vA of the 
reference point A and the rotation is characterized by the angular 
velocity V of the slab (which is independent of the choice of A). Thus, 
the velocity vA of point A and the angular velocity V of the slab define 

946 Kinematics of Rigid Bodies

Photo 15.5 If the tires of this car are rolling 
without sliding the instantaneous center of rotation 
of a tire is the point of contact between the road 
and the tire.
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947

completely the velocities of all the other particles of the slab (Fig. 
15.18a). Now let us assume that vA and V are known and that they 
are both different from zero. (If vA 5 0, point A is itself the instan-
taneous center of rotation, and if V 5 0, all the particles have the 
same velocity vA.) These velocities could be obtained by letting the slab 
rotate with the angular velocity V about a point C located on the per-
pendicular to vA at a distance r 5 vA/v from A as shown in Fig. 15.18b. 
We check that the velocity of A would be perpendicular to AC and that 
its magnitude would be rv 5 (vA/v)v 5 vA. Thus the velocities of all 
the other particles of the slab would be the same as originally defined. 
Therefore, as far as the velocities are concerned, the slab seems to rotate 
about the instantaneous center C at the instant considered.
 The position of the instantaneous center can be defined in two 
other ways. If the directions of the velocities of two particles A and B 
of the slab are known and if they are different, the instantaneous 
center C is obtained by drawing the perpendicular to vA through A 
and the perpendicular to vB through B and determining the point in 
which these two lines intersect (Fig. 15.19a). If the velocities vA and 
vB of two particles A and B are perpendicular to the line AB and if 
their magnitudes are known, the instantaneous center can be found 
by intersecting the line AB with the line joining the extremities of the 
vectors vA and vB (Fig. 15.19b). Note that if vA and vB were parallel 

vA vA

A A

C

(a) (b)

r = vA/w

w

w

Fig. 15.18

C C

A

(a) (b)

A

B B

vAvA

vB
vB

Fig. 15.19

15.7 Instantaneous Center of Rotation in 
Plane Motion
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948 Kinematics of Rigid Bodies in Fig. 15.19a or if vA and vB had the same magnitude in Fig. 15.19b, 
the instantaneous center C would be at an infinite distance and V 
would be zero; all points of the slab would have the same velocity.
 To see how the concept of instantaneous center of rotation can 
be put to use, let us consider again the rod of Sec. 15.6. Drawing 
the perpendicular to vA through A and the perpendicular to vB 
through B (Fig. 15.20), we obtain the instantaneous center C. At the 

q

w

A

B
C

l
vB

vA

Fig. 15.20

instant considered, the velocities of all the particles of the rod are 
thus the same as if the rod rotated about C. Now, if the magnitude 
vA of the velocity of A is known, the magnitude v of the angular 
velocity of the rod can be obtained by writing

v 5
vA

AC
5

vA

l cos u

The magnitude of the velocity of B can then be obtained by writing

vB 5 (BC)v 5 l sin u 

vA

l cos u
5 vA tan u

Note that only absolute velocities are involved in the computation.
 The instantaneous center of a slab in plane motion can be 
located either on the slab or outside the slab. If it is located on the 
slab, the particle C coinciding with the instantaneous center at a given 
instant t must have zero velocity at that instant. However, it should 
be noted that the instantaneous center of rotation is valid only at a 
given instant. Thus, the particle C of the slab which coincides with 
the instantaneous center at time t will generally not coincide with the 
instantaneous center at time t 1 Dt; while its velocity is zero at time t, 
it will probably be different from zero at time t 1 Dt. This means 
that, in general, the particle C does not have zero acceleration and, 
therefore, that the accelerations of the various particles of the slab 
cannot be determined as if the slab were rotating about C.
 As the motion of the slab proceeds, the instantaneous center 
moves in space. But it was just pointed out that the position of the 
instantaneous center on the slab keeps changing. Thus, the instanta-
neous center describes one curve in space, called the space centrode, 
and another curve on the slab, called the body centrode (Fig. 15.21). 
It can be shown that at any instant, these two curves are tangent at C 
and that as the slab moves, the body centrode appears to roll on the 
space centrode.Fig. 15.21

C

Body
centrode

Space
centrode
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95715.8  ABSOLUTE AND RELATIVE ACCELERATION 
IN PLANE MOTION

We saw in Sec. 15.5 that any plane motion can be replaced by a 
translation defined by the motion of an arbitrary reference point A 
and a simultaneous rotation about A. This property was used in Sec. 
15.6 to determine the velocity of the various points of a moving slab. 
The same property will now be used to determine the acceleration 
of the points of the slab.
 We first recall that the absolute acceleration aB of a particle of 
the slab can be obtained from the relative-acceleration formula 
derived in Sec. 11.12,

 aB 5 aA 1 aB/A (15.21)

where the right-hand member represents a vector sum. The accel-
eration aA corresponds to the translation of the slab with A, while 
the relative acceleration aB/A is associated with the rotation of the 
slab about A and is measured with respect to axes centered at A and 
of fixed orientation. We recall from Sec. 15.3 that the relative accel-
eration aB/A can be resolved into two components, a tangential com-
ponent (aB/A)t perpendicular to the line AB, and a normal component 
(aB/A)n directed toward A (Fig. 15.22). Denoting by rB/A the position 
vector of B relative to A and, respectively, by vk and ak the angular 
velocity and angular acceleration of the slab with respect to axes of 
fixed orientation, we have

 (aB/A)t 5 ak 3 rB/A  (aB/A)t 5 ra
 (aB/A)n 5 2v2rB/A   (aB/A)n 5 rv2 (15.22)

where r is the distance from A to B. Substituting into (15.21) the 
expressions obtained for the tangential and normal components of 
aB/A, we can also write

 aB 5 aA 1 ak 3 rB/A 2 v2rB/A (15.219)

15.8 Absolute and Relative Acceleration 
in Plane Motion

Plane motion = Translation with A + Rotation about A

A (fixed)A

B
aB

aB/A

aB/A
(aB/A)n

(aB/A)n

(aB/A)t (aB/A)t

aA

A

B
B

x'

y'

aA

aB

aA

aA

ak
wk

rB/A= +

Fig. 15.22

Photo 15.6 The central gear rotates about a 
fixed axis and is pin-connected to three bars 
which are in general plane motion.
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958 Kinematics of Rigid Bodies

 As an example, let us again consider the rod AB whose extremi-
ties slide, respectively, along a horizontal and a vertical track (Fig. 
15.23). Assuming that the velocity vA and the acceleration aA of A 
are known, we propose to determine the acceleration aB of B and 
the angular acceleration A of the rod. Choosing A as a reference 
point, we express that the given motion is equivalent to a translation 
with A and a rotation about A. The absolute acceleration of B must 
be equal to the sum

 aB 5 aA 1 aB/A

 5 aA 1 (aB/A)n 1 (aB/A)t 
(15.23)

where (aB/A)n has the magnitude lv2 and is directed toward A, while 
(aB/A)t has the magnitude la and is perpendicular to AB. Students 
should note that there is no way to tell whether the tangential compo-
nent (aB/A)t is directed to the left or to the right, and therefore both 
possible directions for this component are indicated in Fig. 15.23. 
Similarly, both possible senses for aB are indicated, since it is not 
known whether point B is accelerated upward or downward.
 Equation (15.23) has been expressed geometrically in Fig. 15.24. 
Four different vector polygons can be obtained, depending upon the 
sense of aA and the relative magnitude of aA and (aB/A)n. If we are to 
determine aB and a from one of these diagrams, we must know not 
only aA and u but also v. The angular velocity of the rod should there-
fore be separately determined by one of the methods indicated in 
Secs. 15.6 and 15.7. The values of aB and a can then be obtained by 
considering successively the x and y components of the vectors shown 
in Fig. 15.24. In the case of polygon a, for example, we write

y1 x components: 0 5 aA 1 lv2 sin u 2 la cos u
1xy components: 2aB 5 2lv2 cos u 2 la sin u

and solve for aB and a. The two unknowns can also be obtained by 
direct measurement on the vector polygon. In that case, care should 
be taken to draw first the known vectors aA and (aB/A)n.
 It is quite evident that the determination of accelerations is 
considerably more involved than the determination of velocities. Yet 

θ

A A

B B
B

l l
(aB/A)n

(a B/A
) t

aB
aA

aA aA

= +

Plane motion = Translation with A + Rotation about A
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a

w

Fig. 15.23
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959in the example considered here, the extremities A and B of the rod 
were moving along straight tracks, and the diagrams drawn were 
relatively simple. If A and B had moved along curved tracks, it would 
have been necessary to resolve the accelerations aA and aB into nor-
mal and tangential components and the solution of the problem 
would have involved six different vectors.
 When a mechanism consists of several moving parts which are 
pin-connected, the analysis of the mechanism can be carried out by 
considering each part as a rigid body, keeping in mind that the points 
at which two parts are connected must have the same absolute accel-
eration (see Sample Prob. 15.7). In the case of meshed gears, the 
tangential components of the accelerations of the teeth in contact 
are equal, but their normal components are different.

*15.9  ANALYSIS OF PLANE MOTION IN TERMS 
OF A PARAMETER

In the case of certain mechanisms, it is possible to express the coor-
dinates x and y of all the significant points of the mechanism by 
means of simple analytic expressions containing a single parameter. 
It is sometimes advantageous in such a case to determine the abso-
lute velocity and the absolute acceleration of the various points of 
the mechanism directly, since the components of the velocity and 
of the acceleration of a given point can be obtained by differentiating 
the coordinates x and y of that point.
 Let us consider again the rod AB whose extremities slide, 
respectively, in a horizontal and a vertical track (Fig. 15.25). The 
coordinates xA and yB of the extremities of the rod can be expressed 
in terms of the angle u the rod forms with the vertical:

 xA 5 l sin u  yB 5 l cos u (15.24)

Differentiating Eqs. (15.24) twice with respect to t, we write

 vA 5 ẋA 5 lu̇ cos u
 aA 5 ẍA 5 2lu̇2 sin u 1 lü cos u

 vB 5 ẏB 5 2lu̇ sin u
 aB 5 ÿB 5 2lu̇2 cos u 2 lü sin u

Recalling that u̇ 5 v and ü 5 a, we obtain

 vA 5 lv cos u vB 5 2lv sin u (15.25)

aA 5 2lv2 sin u 1 la cos u  aB 5 2lv2 cos u 2 la sin u
(15.26)

We note that a positive sign for vA or aA indicates that the velocity 
vA or the acceleration aA is directed to the right; a positive sign for 
vB or aB indicates that vB or aB is directed upward. Equations (15.25) 
can be used, for example to determine vB and v when vA and u are 
known. Substituting for v in (15.26), we can then determine aB and 
a if aA is known.

q

A

B

lyB

xA

Fig. 15.25

15.9 Analysis of Plane Motion in 
Terms of a Parameter
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