
Data Structures

Bachelor's Degree in Electrical and

Mechanical Engineering

Carlos III University of Madrid

- 2

Types of Data Structures

1. List is an ordered and modifiable collection. Allows duplicate elements

2. Tuple is an ordered and immutable collection. Allows duplicate elements

3. Set is a messy collection and not indexed. There are no duplicate elements.

4. String is a collection of ordered and modifiable characters

URLs:

⬥ https://www.w3schools.com/python/python_lists.asp

⬥ https://docs.python.org/3.6/tutorial/introduction.html

https://www.w3schools.com/python/python_lists.asp
https://docs.python.org/3.6/tutorial/introduction.html

- 3

List (I)

- 4

List (II)

⬥ The list of special variables that store several elements

⬥ It can be written as a list of values ​​separated by commas

(items) in brackets

⬥ It is not necessary that the items in a list all have the same type

even if it is generally preferable that they are of the same type.

⬥ The first element of the list is in position 0

- 5

List (III)

cars = ["Ford", "Volvo", "BMW"]

car1 = "Ford";
car2 = "Volvo";
car3 = "BMW";

V
S

- 6

List (IV)

Get the value of the first element in the list:
x = cars [0] # the first item in the list is in position 0

Modify the first item in the list:
cars [0] = "Toyota"

Know the number of items in the "cars" list:
x = len (cars)

- 7

List (V)

- 8

List and Loop

Print the elements in the list “cars”:
for x in cars:

print(x)

- 9

Methods (I)
Method Description

append(element) Adds an element to the end of the list

clear() Deletes all elements of the list

copy() Returns a copy of the list

count(item) Returns the number of elements with the specified
value (item)

extend(list) Adds the elements of another list to the end of the
current list

index(item) Returns the index of the first element with the specified
value (item)

insert(pos, item) Adds an element (item) at the specified position (pos)

pop([pos]) Retrieves and deletes an element from the list at the
specified position (pos) or the element at the end.

remove(item) Removes the first element with the specified value

reverse() Reverses (inverts) the order of the list

sort() Orders the list

https://www.w3schools.com/python/ref_list_append.asp
https://www.w3schools.com/python/ref_list_clear.asp
https://www.w3schools.com/python/ref_list_copy.asp
https://www.w3schools.com/python/ref_list_count.asp
https://www.w3schools.com/python/ref_list_extend.asp
https://www.w3schools.com/python/ref_list_index.asp
https://www.w3schools.com/python/ref_list_insert.asp
https://www.w3schools.com/python/ref_list_pop.asp
https://www.w3schools.com/python/ref_list_remove.asp
https://www.w3schools.com/python/ref_list_reverse.asp
https://www.w3schools.com/python/ref_list_sort.asp

- 10

Methods (II)

⬥ fruits = ['apple', 'banana', 'cherry', 'orange']

fruits.append("orange")

⬥ fruits = ['apple', 'banana', 'cherry', 'orange']

fruits.clear()

⬥ fruits = ['apple', 'banana', 'cherry', 'orange']

x = fruits.copy()

⬥ fruits = ['apple', 'banana', 'cherry']

x = fruits.count("cherry")

- 11

Methods (III)

⬥ fruits = ['apple', 'banana', 'cherry']

cars = ['Ford', 'BMW', 'Volvo']

fruits.extend(cars)

⬥ fruits = ['apple', 'banana', 'cherry']

x = fruits.index("cherry")

⬥ fruits = ['apple', 'banana', 'cherry']

fruits.insert(1, "orange")

- 12

Methods (IV)

⬥ fruits = ['apple', 'banana', 'cherry']

fruits.remove("banana")

⬥ fruits = ['apple', 'banana', 'cherry']

fruits.reverse()

⬥ cars = ['Ford', 'BMW', 'Volvo']

cars.sort()

⬥ fruits = ['apple', 'banana', 'cherry']

fruits.pop(1)

- 13

Examples

Fill a list with a succession of squares of 10 elements

- 14

Examples (more)

- 15

The lower in a list

- 16

Order a list

- 17

Stack (LIFO)

⬥ To use a list as a stack it is only allowed to use functions

append and pop.

- 18

Queue (FIFO)

⬥ The most eficciency way to create a queue is by using the class deque from

the module collections.

from collections import deque

myQueue = deque([3,4,5])

⬥ The deque class contains the append and popleft functions to use the

structure as a queue.

- 19

Queue (FIFO)

- 20

Tuple

- 21

Tuple

⬥ A tuple is an immutable list. It can not be modified in any case after

its creation.

thistuple = ("apple", "banana", "cherry")

print(thistuple[1])

print(len(thistuple))

> banana

> 3

thistuple = ("apple", "banana", "cherry")
thistuple[1] = "blackcurrant" # Forbidden!!!

- 22

Set

- 23

Set

⬥ A Set is a collection with no order and not indexed. There are no

duplicate elements

thisset = {"apple", "banana", "cherry"}
print(thisset)
> {'apple', 'cherry', 'banana '}

thisset.add("damson")

thisset.remove("banana")

print(len(thisset))

> 3

- 24

Set

⬥ You can use ‘remove’ or ‘discard’ to remove elements from a set

■ If the element doesn’t exist, remove will raise an error

■ If the element doesn’t exist, discard will not raise an error
thisset = {"apple", "banana", "cherry"}
print(thisset)
> {'apple', ' cherry', 'banana '}

thisset.add("damson")

thisset.remove("banana")

thisset.discard("orange")

- 25

String

Chain of characters

- 26

String (I)

• Chains are nothing more than text enclosed in single quotes

('string') or double quotes (“string”).

• Within the quotes you can add special characters by escaping

them with '\', such as '\n', the new line character, or '\t', the tab

character.

'hello' is the same as "hello".

- 27

String (II)

⬥ It is also possible to enclose a string between triple quotes (single or double).

In this way we can write the text in several lines, and when printing the string,

the line breaks that we introduced will be respected

⬥ Chains also support operators such as addition (chain concatenation) and

multiplication.

- 28

String (III)

⬥Chains can be printed on the screen using the

print function.

⬥A character is a string of length 1.

⬥As in a list the brackets allow access to the

character.

- 29

String (IV)

Get the character at position 1:

a = "hello"
print(a[1])

Get the characters from position 2 to 5:

b = "world"
print(b[2:5])

- 30

String (V)

The strip method returns the string without leading and
trailing spaces:

a = " Hello, World! "
print(a.strip()) # returns "Hello, World!"

Function len() returns the length of the String:

a = "Hello, World!"
print(len(a))

- 31

String (VI)

The lower() method returns the string in lowercase:

a = "Hello, World!"
print(a.lower())
> hello, world!

The upper() method returns the string in uppercase:

a = "Hello, World!"
print(a.upper())
> HELLO, WORLD!

- 32

String (VII)

replace() replaces a string with another string:

a = "Hello, World!"
print(a.replace("H", "J"))
> Jello, World!

split() divides the string into substrings when and if it finds
the separator:

a = "Hello, World!"
print(a.split(","))
> ['Hello', ' World!']

