Matemática Discreta I

Tema 2. Aritmética entera

Jesús Martínez Mateo jmartinez@fi.upm.es

Departamento de Matemática Aplicada a las TIC E.T.S. Ingenieros Informáticos Universidad Politécnica de Madrid

Grado en Ingeniería Informática Curso 2020/21

Contenidos

- Conjunto de los números enteros
 - Axioma de buena ordenación
- 2 Inducción matemática
- 3 Divisibilidad
 - Sistemas de numeración
 - Máximo común divisor
 - Algoritmo de Euclides
 - Identidad de Bezout. Algoritmo extendido de Euclides
 - Ecuaciones diofánticas
- Múmeros primos
 - Teorema fundamental de la aritmética

Conjunto de los números enteros $\mathbb Z$

Llamamos conjunto de los números enteros al conjunto

$$\mathbb{Z} = \{\dots, -3, -2, -1, 0, 1, 2, 3, \dots\}$$

que junto con las operaciones suma y producto $(\mathbb{Z},+,\cdot)$ verifica las siguientes propiedades:

- La suma y el producto son leyes de composición internas: $\forall a,b \in \mathbb{Z},\ a+b \in \mathbb{Z},\ ab \in \mathbb{Z}.$
- Asociativa: $\forall a, b, c \in \mathbb{Z}$, a + (b + c) = (a + b) + c, a(bc) = (ab)c.
- Conmutativa: $\forall a, b \in \mathbb{Z}$, a + b = b + a, ab = ba.
- Existencia de elemento neutro: $\forall a \in \mathbb{Z}, \ \exists \ 0 \in \mathbb{Z} \ | \ a+0=a, \ \exists \ 1 \in \mathbb{Z} \ | \ a1=a.$
- Existencia de elemento opuesto: $\forall a \in \mathbb{Z}, \exists -a \in \mathbb{Z} \mid a + (-a) = 0.$
- Distributiva: $\forall a, b, c \in \mathbb{Z}$, a(b+c) = ab + ac.

Relación de orden en $\mathbb Z$

El conjunto de los números enteros $\mathbb Z$ con la relación **menor o igual** $(\mathbb Z,\leq)$ verifica la siguientes propiedades:

- Reflexiva: $\forall a \in \mathbb{Z}, \ a \leq a$.
- Antisimétrica: $\forall a, b \in \mathbb{Z}$, si $a \leq b, b \leq a$ entonces a = b.
- Transitiva: $\forall a, b, c \in \mathbb{Z}$, si $a \leq b, b \leq c$ entonces $a \leq c$.

La relación \leq es por lo tanto una relación de orden en \mathbb{Z} , y el par (\mathbb{Z}, \leq) es un conjunto totalmente ordenado: $\forall a,b\in\mathbb{Z}$, $a\leq b$ o $b\leq a$.

Otra propiedad del conjunto $\mathbb Z$ es que la relación menor o igual en $\mathbb Z$ es compatible con las operaciones suma y producto:

• $\forall a,b,c\in\mathbb{Z}$, si $a\leq b$ entonces $a+c\leq b+c$, y si $a\leq b,c>0$ entonces $ac\leq bc$.

Axioma de buena ordenación

Definición

Sea $S\subseteq \mathbb{Z}$. Decimos que $c\in \mathbb{Z}$ es una **cota inferior** del conjunto S si $\forall a\in S,\,c\leq a.$ Si además $c\in S$ decimos entonces que c es el **primer elemento** (o elemento mínimo) de S. Análogamente, decimos que $d\in \mathbb{Z}$ es una **cota superior** de S si $\forall a\in S,\,a\leq d$, y decimos que d es el **último elemento** (o elemento máximo) de S si $d\in S$.

Concluimos con una propiedad más del conjunto \mathbb{Z} , el axioma de buena ordenación:

• Todo subconjunto S de \mathbb{Z} , no vacío, y acotado inferiormente (ie. existe una cota inferior de S en \mathbb{Z}) posee un primer elemento. Análogamente, todo subconjunto de \mathbb{Z} , no vacío, y acotado superiormente posee un último elemento.

Propiedad cancelativa

Teorema (Propiedad cancelativa del producto)

 $\forall a, b, c \in \mathbb{Z}, \text{ si } a \neq 0, \ ab = ac \text{ entonces } b = c.$

Demostración.

Probamos en primer lugar que a0 = 0. Efectivamente,

$$a0 = a0 + \underbrace{0}_{\mathsf{neutro}} = a0 + \underbrace{a + (-a)}_{\mathsf{opuesto}} = a0 + \underbrace{a1}_{\mathsf{neutro}} - a = \underbrace{a(0+1)}_{\mathsf{distributiva}} - a = a1 - a = 0.$$

Probamos ahora que si ab=0 con $a\neq 0$ tenemos necesariamente que b=0.

Propiedad cancelativa

Teorema (Propiedad cancelativa del producto)

 $\forall a, b, c \in \mathbb{Z}, \text{ si } a \neq 0, \ ab = ac \text{ entonces } b = c.$

Demostración.

Efectivamente,

$$ab = 0 \Rightarrow ab = a + (-a) \Rightarrow ab + a = a \Rightarrow a(b+1) = a.$$

Finalmente, podemos reescribir

$$ab = ac \Rightarrow ab + a(-c) = 0 \Rightarrow a(b - c) = 0$$

y por ser $a \neq 0$ tenemos que b - c = 0, y por lo tanto b = c.

Inducción matemática

Definición

Decimos que un conjunto S es un **conjunto inductivo** si verifica que:

- $1 \in S$.
- Si $x \in S$ entonces $x + 1 \in S$.

Veamos que $\mathbb N$ es el mejor conjunto inductivo.

Teorema

Si $S \subseteq \mathbb{N}$ es un conjunto inductivo, entonces $S = \mathbb{N}$.

Demostración.

Asumimos que $S \neq \mathbb{N}$ y por lo tanto existe el complementario de S en \mathbb{N} , S^c , no vacío. Como $S^c \subseteq \mathbb{N} \subset \mathbb{Z}$ y está acotado inferiormente (ya que \mathbb{N} lo está), por el axioma de buena ordenación tenemos que S^c tiene un primer elemento, digamos a. Luego $a-1 \notin S^c$ y por lo tanto $a-1 \in S$, pero por la hipótesis tendríamos que $(a-1)+1 \in S$, es decir, también tendríamos que $a \in S$ lo que contradice que a es el primer elemento de S^c .

Inducción matemática

Teorema (Principio de inducción)

Sea P_n una proposición matemática. Si se verifican:

- P₁ es verdadera.
- Si P_k es verdadera entonces P_{k+1} también lo es.

entonces P_n es verdadera para todo $n \in \mathbb{N}$.

Demostración.

Sea $S=\{n\in\mathbb{N}\mid P_n \text{ es cierta}\}$. Por la hipótesis de inducción sabemos que $1\in S$ y si $k\in S$ entonces $k+1\in S$ por lo que S es un conjunto inductivo y por el teorema anterior sabemos que $S=\mathbb{N}$. Luego la propiedad P_n es cierta $\forall n\in\mathbb{N}$.

Inducción matemática

Ejemplo

Demuestra por inducción que $\sum_{k=1}^{n} (2k-1) = n^2$ para todo $n \in \mathbb{N}$.

- Comprobamos que efectivamente se cumple para n=1, es decir, $\sum_{k=1}^{1}(2k-1)=2\cdot 1-1=1^2.$
- Asumimos que se cumple para n, es decir, que $\sum_{k=1}^{n} (2k-1) = n^2$, y demostramos que también se cumple para n+1. Efectivamente,

$$\sum_{k=1}^{n} (2k-1) = n^{2} \Rightarrow$$

$$\Rightarrow \left(\sum_{k=1}^{n} (2k-1)\right) + 2(n+1) - 1 = n^{2} + 2(n+1) - 1 \Rightarrow$$

$$\Rightarrow \sum_{k=1}^{n+1} (2k-1) = n^{2} + 2n + 1 = (n+1)^{2}. \quad \Box$$

Divisibilidad

Definición

Sean $a,b\in\mathbb{Z}$ con $b\neq 0$. Decimos que b **divide a** a (o que b es un divisor o factor de a), y lo denotamos por $b\mid a$, si y sólo si existe $q\in\mathbb{Z}$ tal que a=qb. También decimos que a es un múltiplo de b.

Propiedades. Sean $a, b, c, d \in \mathbb{Z}$.

- 1 | a.
- *a* | 0.
- Si $a \mid b$ y $b \mid c$ entonces $a \mid c$.
- Si $a \mid b$ y $c \mid d$ entonces $ac \mid bd$.
- Si $c \mid a$ y $c \mid b$ entonces $c \mid (ax + by) \quad \forall x, y \in \mathbb{Z}$.
- Si $a \mid b$ y $b \mid a$ entonces a = b o a = -b.

Divisibilidad

Teorema (Teorema de la división)

Sean $a,b \in \mathbb{Z}$ con b > 0. Existe un único par de enteros q y r tales que

$$a = qb + r, \qquad 0 \le r < b.$$

Definición

Sean $a,b\in\mathbb{Z}$ con b>0, y $q,r\in\mathbb{Z}$ tales que a=qb+r con $0\leq r< b$. Llamamos **dividendo** al entero a, **divisor** al entero b, y a los enteros q y r los llamamos **cociente** y **resto**, respectivamente.

Corolario

Sean $a,b\in\mathbb{Z}$ con $b\neq 0$. Existe un único par de enteros q y r tales que

$$a = qb + r, \qquad 0 \le r < |b|.$$

Divisibilidad

Demostración.

- Existencia. Sea $S=\{a-qb\mid q\in\mathbb{Z}\}$. El conjunto $S\cap\mathbb{N}$ es un subconjunto no vacío de \mathbb{N} , y por lo tanto de \mathbb{Z} . El principio de buena ordenación nos asegura la existencia de un primer elemento de la forma $r=a-qb\geq 0$, es decir, a=qb+r con $r\geq 0$. Se tiene también necesariamente que r< b. De lo contrario, si $r\geq b$ existe el entero $r-b=a-(q+1)b\geq 0$ por lo que r no sería el primer elemento de S.
- Unicidad. Suponemos que existen $q,q',r,r' \in \mathbb{Z}$ tales que a=qb+r=q'b+r' con $0 \le r < b$ y $0 \le r' < b$. Tenemos entonces que r-r'=(q'-q)b. Si $q \ne q'$ tenemos que $|q'-q| \ge 1$ y por lo tanto $|r-r'| \ge b$ lo que contradice que $0 \le r < b$ y $0 \le r' < b$.

Sistemas de numeración

Definición

Decimos que $n \in \mathbb{N}$ está expresado en base b, y lo denotamos por $n = (r_k r_{k-1} \dots r_1 r_0)_b$, si

$$n = r_k b^k + r_{k-1} b^{k-1} + \dots + r_1 b + r_0 = \sum_{j=0}^k r_j b^j$$

con $0 \le r_i < b$ para todo $i \in \{0, 1, \dots, k\}$, y $r_k \ne 0$.

Teorema

Sea $b \in \mathbb{N}$ con $b \geq 2$. Cualquier número $n \in \mathbb{N}$ puede expresarse de forma única en base b.

Sistemas de numeración

Demostración.

Por el teorema de la división entera tenemos que

$$n = q_0 b + r_0 \qquad 0 \le r_0 < b \qquad 0 \le q_0 < n$$

$$q_0 = q_1 b + r_1 \qquad 0 \le r_1 < b \qquad 0 \le q_1 < q_0 < n$$

$$q_1 = q_2 b + r_2 \qquad 0 \le r_2 < b \qquad 0 \le q_2 < q_1 < q_0 < n$$
...

.

$$q_{k-1} = q_k b + r_k$$
 $0 \le r_k < b$ $0 = q_k < q_{k-1} < \dots < q_0 < n$

El conjunto de los cociente $Q=\{q_i\in\mathbb{Z}\}$ está acotado inferiormente por cero, por lo que por el axioma de buena ordenación existe un primer elemento, es decir, existe $q_k=0$ para algún k finito. Tenemos entonces que

$$n = q_0b + r_0 = (q_1b + r_1)b + r_0 = ((q_2b + r_2)b + r_1)b + r_0 =$$

$$= \dots = r_kb^k + r_{k-1}b^{k-1} + \dots + r_1b + r_0 = \sum_{j=0}^k r_jb^j$$

Sistemas de numeración

Ejemplos

- $5413 = 5 \cdot 10^3 + 4 \cdot 10^2 + 1 \cdot 10 + 3 = (5413)_{10}$.
- Si queremos representar 11 en base 2 (binario) hacemos

$$\begin{array}{rl} 11 & = 5 \cdot 2 + 1 \\ 5 & = 2 \cdot 2 + 1 \\ 2 & = 1 \cdot 2 + 0 \\ 1 & = 0 \cdot 2 + 1 \end{array}$$

y por lo tanto sabemos que $11 = 1 \cdot 2^3 + 0 \cdot 2^2 + 1 \cdot 2 + 1 = (1011)_2$.

ullet El número $(10110)_2$ podemos pasarlo a base 10 (decimal) como sigue

$$(10110)_2 = 1 \cdot 2^4 + 0 \cdot 2^3 + 1 \cdot 2^2 + 1 \cdot 2 + 0 = 16 + 4 + 2 = 22.$$

Máximo común divisor

Definiciones

- Sean $a, b \in \mathbb{Z}$. Decimos que $d \in \mathbb{Z}$ es un **divisor común** (o factor común) de a y b si se tiene que $d \mid a$ y $d \mid b$.
- Sean $a,b \in \mathbb{Z}$, no ambos nulos. Llamamos **máximo común divisor** de a y b, y lo denotamos por mcd(a,b), al mayor de los divisores comunes de a y b. Es decir, d = mcd(a,b) si y sólo si
 - $d \mid a \text{ y } d \mid b \text{ (ie. } d \text{ es divisor común)}.$
 - $\forall d' \in \mathbb{Z}$ tal que $d' \mid a$ y $d' \mid b$ entonces se tiene que $d' \leq d$ (ie. d es el mayor de los divisores comunes).

Teorema (Máximo común divisor)

Sean $a, b \in \mathbb{Z}$, no ambos nulos. Existe $d = \operatorname{mcd}(a, b)$ y es único.

Máximo común divisor

Demostración.

- Existencia. Sean X e Y dos conjuntos formados por los divisores positivos de a y b, respectivamente. El conjunto de los divisores comunes de a y b es $X \cap Y \subseteq \mathbb{Z}$ y verifica que: $X \cap Y \neq \emptyset$ puesto que $1 \in X$ y $1 \in Y$, y además $X \cap Y$ está acotado superiormente puesto que X e Y están ambos están acotados superiormente por a y b, respectivamente. El axioma de buena ordenación garantiza entonces la existencia de un último elemento que será $\operatorname{mcd}(a,b)$.
- Unicidad. Suponemos que existen d y d' tales que $d \mid a, d \mid b, d' \mid a$ y $d' \mid b$, es decir, d y d' son ambos divisores comunes de a y b. Si $d = \operatorname{mcd}(a, b)$ se tiene entonces que $d' \leq d$, y si $d' = \operatorname{mcd}(a, b)$ se tiene también que $d \leq d'$, y por lo tanto d = d'.

Máximo común divisor

Propiedades. Sean $a, b \in \mathbb{Z}$, se verifica que:

- $\bullet \ \operatorname{mcd}(a,b) = \operatorname{mcd}(b,a) = \operatorname{mcd}(-a,b) = \operatorname{mcd}(a,-b) = \operatorname{mcd}(-a,-b).$
- $\mod(a, a) = \gcd(a, 0) = a.$

Sean $a_1, a_2, \ldots, a_k \in \mathbb{Z}$, se verifica que:

• $mcd(a_1, a_2, \dots, a_k) = mcd(mcd(a_1, a_2), a_3, \dots, a_k).$

Observación.

Como veremos más adelante, fundamentado en la primera de las propiedades, calcularemos siempre el $\mathrm{mcd}(a,b)$ asumiendo que a>b>0.

Algoritmo de Euclides

Teorema

Sean $a,b \in \mathbb{Z}$, no ambos nulos, tales que a=qb+r, entonces

$$mcd(a, b) = mcd(b, r)$$

cualesquiera que sean los enteros $q, r \in \mathbb{Z}$.

Demostración.

Sean $a,b,q,r\in\mathbb{Z}$ tales que a=qb+r, y sea $d=\operatorname{mcd}(a,b)$. Tenemos entonces que $d\mid a$ y $d\mid b$, y por lo tanto $d\mid (a-qb)=r$, es decir, $d\mid r$. Por otro lado, si existe $c\in\mathbb{Z}$ con c>0 tal que $c\mid b$ y $c\mid r$, tenemos también que $c\mid (qb+r)=a$, es decir, $c\mid a$ y por lo tanto, por ser c divisor común de a y b, necesariamente $c\mid d$. Luego $d=\operatorname{mcd}(b,r)$.

Algoritmo de Euclides

Sean $a,b\in\mathbb{Z}$, no ambos nulos, con a>b>0. Podemos encontrar el $\mathrm{mcd}(a,b)$ utilizando el algoritmo de la divisibilidad como sigue.

• Dividimos a entre b y encontramos q_1 y r_1 tales que

$$a = q_1 b + r_1 \qquad \text{con} \qquad 0 \le r_1 < b$$

y se cumple entonces que $mcd(a, b) = mcd(b, r_1)$.

ullet Dividimos ahora b entre r_1 y encontramos q_2 y r_2 tales que

$$b = q_2 r_1 + r_2$$
 con $0 \le r_2 < r_1$.

y se cumple ahora que $mcd(b, r_1) = mcd(r_1, r_2)$.

• Repitiendo el proceso obtenemos un conjunto de restos r_1, r_2, \ldots, r_k con $b > r_1 > r_2 > \ldots > r_k \geq 0$, es decir, una sucesión estrictamente decreciente de enteros positivos de forma que en algún momento $r_n = 0$, y tenemos entonces que

$$mcd(a,b) = mcd(b,r_1) = \dots = mcd(r_{n-1},0) = r_{n-1}.$$

Algoritmo de Euclides

Ejemplo

Calculamos mediante el algoritmo de Euclides el mcd(194, 70).

Identidad de Bezout

Teorema

Sean $a,b\in\mathbb{Z}$, no ambos nulos. Existen enteros x e y tales que

$$mcd(a, b) = ax + by.$$

Demostración.

Por el algoritmo de Euclides calculamos mcd(a,b). Tenemos entonces que $mcd(a,b) = mcd(b,r_1) = \ldots = mcd(r_{n-1},0) = r_{n-1}$, donde

$$r_{n-1} = r_{n-3} - q_{n-1} \cdot r_{n-2}.$$

Tomando la expresión anterior $r_{n-2} = r_{n-4} - q_{n-2} \cdot r_{n-3}$ tenemos que

$$r_{n-1} = -q_{n-1}r_{n-4} + (1 + q_{n-1}q_{n-2}) \cdot r_{n-3}.$$

Tomamos entonces $r_{n-3}=r_{n-5}-q_{n-3}\cdot r_{n-4}$ y así de forma sucesiva hasta llegar a una expresión de la forma $r_{n-1}=a\cdot x+b\cdot y$.

Algoritmo extendido de Euclides

Ejemplo

Recordamos los pasos del algo. de Euclides para calcular mcd(194,70).

$$\begin{array}{lll} 194 = 2 \cdot 70 + 54 & \Rightarrow & 54 = 194 - 2 \cdot 70 \\ 70 = 1 \cdot 54 + 16 & \Rightarrow & 16 = 70 - 1 \cdot 54 \\ 54 = 3 \cdot 16 + 6 & \Rightarrow & 6 = 54 - 3 \cdot 16 \\ 16 = 2 \cdot 6 + 4 & \Rightarrow & 4 = 16 - 2 \cdot 6 \\ 6 = 1 \cdot 4 + 2 & \Rightarrow & 2 = 6 - 1 \cdot 4 \end{array}$$

Encontramos ahora $x, y \in \mathbb{Z}$ tales que mcd(194, 70) = 194x + 70y.

$$2 = 6 - 1 \cdot 4$$

$$= 6 - 1(16 - 2 \cdot 6) = -1 \cdot 16 + 3 \cdot 6$$

$$= -1 \cdot 16 + 3(54 - 3 \cdot 16) = 3 \cdot 54 - 10 \cdot 16$$

$$= 3 \cdot 54 - 10(70 - 1 \cdot 54) = -10 \cdot 70 + 13 \cdot 54$$

$$= -10 \cdot 70 + 13(194 - 2 \cdot 70) = \underbrace{13}_{x} \cdot 194 \underbrace{-36}_{y} \cdot 70$$

Definiciones

- Decimos que dos enteros a y b son **coprimos** (primos entre sí o primos relativos) si y sólo si mcd(a,b) = 1.
- En el caso de un conjunto de k enteros, $a_1, a_2, \ldots, a_k \in \mathbb{Z}$, decimos:
 - a_1, a_2, \ldots, a_k son **coprimos** si y sólo si $\operatorname{mcd}(a_1, a_2, \ldots, a_k) = 1$.
 - a_1, a_2, \ldots, a_k son **mutuamente coprimos** (o coprimos dos a dos) si y sólo si $\operatorname{mcd}(a_i, a_j) = 1 \quad \forall i, j \in \{1, 2, \ldots k\}, i \neq j.$

Propiedades. Sean $a, b, c \in \mathbb{Z}$. Se verifica que:

- Si a y b son coprimos, $a \mid b$ y $b \mid c$, entonces $(ab) \mid c$.
- Si a y b son coprimos y $a \mid (bc)$, entonces $a \mid c$.

Sean $a_1, a_2, \ldots, a_k \in \mathbb{Z}$. Se verifica que:

• Si a_1, a_2, \ldots, a_k son mutuamente coprimos, entonces a_1, a_2, \ldots, a_k son coprimos. El recíproco no siempre es cierto.

Lema de Euclides

Teorema

Sean $a, b, c \in \mathbb{Z}$ tales que $a \mid (bc)$ y mcd(a, b) = 1. Entonces $a \mid c$.

Demostración.

Supongamos que mcd(a,b) = 1. Entonces existen $x,y \in \mathbb{Z}$ tales que

$$ax + by = 1.$$

Tenemos también entonces que

$$cax + cby = c$$
.

Puesto que $a\mid(bc)$ tenemos entonces que $a\mid(cby)$, y como $a\mid(cax)$ tenemos finalmente que $a\mid(cax+cby)$, y por lo tanto $a\mid c$.

Mínimo común múltiplo

Definiciones

- Sean $a,b \in \mathbb{Z}$. Decimos que $m \in \mathbb{Z}$ es un **múltiplo común** de a y b si se tiene que $a = m \cdot n$ y $b = m \cdot k$ para algún $n,k \in \mathbb{Z}$.
- Sean $a,b\in\mathbb{Z}$, no ambos nulos. Llamamos **mínimo común múltiplo** de a y b, y lo denotamos por $\operatorname{mcm}(a,b)$, al menor de los múltiplos comunes positivos de a y b. Es decir, $m=\operatorname{mcm}(a,b)$ si y sólo si
 - $lacksquare a = m \cdot n$ y $b = m \cdot k$ (ie. m es múltiplo común).
 - $\forall m' \in \mathbb{Z}$ tal que $a = m' \cdot n'$ y $b = m' \cdot k'$ entonces se tiene que $m' \geq m$ (ie. m es el mayor de los múltiplos comunes).

Teorema (Mínimo común múltiplo)

Sean $a,b \in \mathbb{Z}$, no ambos nulos. Existe m = mcm(a,b) y es único.

Observación. Sean $a,b\in\mathbb{Z}$ con a,b>0, $d=\mathrm{mcd}(a,b)$, $m=\mathrm{mcm}(a,b)$. Se verifica entonces que:

dm = ab.



Una ecuación diofántica es una ecuación de la forma

$$ax + by = c$$

donde $a,b,c\in\mathbb{Z}$ son enteros conocidos, y $x,y\in\mathbb{Z}$ son las incógnitas de la ecuación.

Teorema

La ecuación diofántica ax+by=c tiene solución en $\mathbb Z$ si y sólo si $d=\operatorname{mcd}(a,b)\mid c$, en cuyo caso existen infinitas soluciones. Todas las soluciones son:

$$x = x_0 + \frac{b}{d}t$$
 $y = y_0 - \frac{a}{d}t$ $\forall t \in \mathbb{Z},$

donde x_0, y_0 es una solución particular de la ecuación diofántica.

Demostración.

Supongamos que la ecuación ax+by=c tiene solución y sea $d=\operatorname{mcd}(a,b).$ Es claro entonces que $d\mid a$ y $d\mid b$, y por lo tanto $d\mid (ax+by),$ es decir, $d\mid c.$ Recíprocamente, sea $d=\operatorname{mcd}(a,b),$ por la identidad de Bezout existen enteros $x',y'\in\mathbb{Z}$ tales que ax'+by'=d. Supongamos que $d\mid c$, es decir, existe $e\in\mathbb{Z}$ tal que c=de. Tenemos entonces que

$$a(x'e) + b(y'e) = de = c$$

Por lo tanto, x=x'e e y=y'e es una solución particular de la ecuación ax+by=c. Digamos $x_0=x'e$ e $y_0=y'e$.

Demostración.

Sea x e y otra solución particular de la ecuación ax+by=c. Tenemos entonces que

$$a(x - x_0) + b(y - y_0) = 0.$$

Hacemos

$$\frac{a}{d}(x-x_0) = \frac{b}{d}(y_0 - y).$$

Tenemos entonces que $\frac{a}{d} \mid \frac{b}{d}(y_0 - y)$, y puesto que $\operatorname{mcd}(\frac{a}{d}, \frac{b}{d}) = 1$ por el lema de Euclides tenemos que $\frac{a}{d} \mid (y_0 - y)$, es decir, $\frac{a}{d}t = (y_0 - y)$ para $t \in \mathbb{Z}$, o equivalentemente $y = y_0 - \frac{a}{d}t$. Sustituyendo y en la expresión anterior queda

$$\frac{a}{d}(x - x_0) = \frac{b}{d}(y_0 - y_0 + \frac{a}{d}t) \Rightarrow x = x_0 + \frac{b}{d}t.$$

Es decir, todas las soluciones son $x=x_0+\frac{b}{d}t$, $y=y_0-\frac{a}{d}t$, $\forall t\in\mathbb{Z}$.

Ejemplo

Consideramos la ecuación 194x + 70y = 8.

- Mediante el algoritmo de Euclides encontramos que mcd(194,70)=2 y puesto que $2\mid 8$ sabemos que la ecuación dada tiene solución.
- Mediante el algoritmo extendido de Euclides encontramos una solución particular. Tenemos que $194 \cdot 13 + 70 \cdot (-36) = 2$. Luego multiplicando ambos lados de la igualdad por 4 obtenemos una solución particular de la ecuación dada: $x_0 = 52$, $y_0 = -144$.
- Todas las soluciones de la ecuación son

$$\begin{cases} x = 52 + \frac{70}{2}t = 52 + 35t \\ y = -144 - \frac{194}{2}t = -144 - 97t \end{cases} \forall t \in \mathbb{Z}$$

Definiciones

- Decimos que un entero p con p > 1 es **primo** si los únicos divisores positivos de p son 1 y el propio p.
- En caso contrario, decimos que p es compuesto. Es decir, un entero n con n>1 es **compuesto** si existen $a,b\in\mathbb{Z}$ con 1< a< n< y 1< b< n tales que n=ab.

Propiedades. Sea $p \in \mathbb{Z}$ un número primo. Se verifica entonces que:

- Si $a \in \mathbb{Z}$, entonces $p \mid a$ o p y a son coprimos.
- Si $a, b \in \mathbb{Z}$ y $p \mid (ab)$, entonces $p \mid a$ o $p \mid b$.

Teorema (Teorema fundamental de la aritmética)

Todo entero p con p>1 admite una descomposición en factores primos

$$n = p_1^{e_1} p_2^{e_2} \cdots p_k^{e_k},$$

donde p_1, p_2, \ldots, p_k son primos distintos y e_1, e_2, \ldots, e_k son enteros positivos. Esta factorización es única, independientemente del orden de los factores.

Observación. Sean $a=p_1^{e_1}\cdots p_k^{e_k}$ y $b=p_1^{f_1}\cdots p_k^{f_k}$. Se verifica que:

- $\bullet \ ab = p_1^{e_1 + f_1} \cdots p_k^{e_k + f_k}$
- $\bullet \ a^b = p_1^{e_1 \cdot b} \cdots p_k^{e_k \cdot b}$
- $\bullet \operatorname{mcd}(ab) = p_1^{\min(e_1, f_1)} \cdots p_k^{\min(e_k, f_k)}$

Demostración.

• Existencia. Sea $S \subseteq \mathbb{N} \setminus \{1\}$ el conjunto de enteros que no admiten una descomposición en factores primos. Por reducción al absurdo, supongamos que $S \neq \emptyset$. Por el axioma de buena ordenación existe un primer entero $n_0 = \min S$. Entonces, n_0 no es primo y por lo tanto existen enteros $a,b \in \mathbb{N} \setminus \{1\}$ con $a,b < n_0$ tal que $n_0 = ab$. Puesto que $a,b \notin S$ ambos se pueden expresar como producto de factores primos como

$$a = p_1 p_2 \cdots p_k, \quad b = q_1 q_2 \cdots q_l.$$

Por lo tanto, podríamos expresar n_0 como producto de factores primos, $n_0=p_1\cdots p_kq_1\cdots q_l$ lo que contradice la hipótesis de partida.

Demostración.

• Unicidad. Sea $T \subseteq \mathbb{N} \setminus \{1\}$ el conjunto de enteros que no admiten una descomposición única en factores primos. Por reducción al absurdo, supongamos que $T \neq \emptyset$. Por el axioma de buena ordenación existe un primer entero $m_0 = \min T$, tal que

$$m_0 = p_1 \cdots p_k = q_1 \cdots q_l,$$

con $p_i, q_i \in \mathbb{N} \setminus \{1\}$, $p_i, q_i < m_0$ para todo i, j. Ahora, como $p_1 \mid m_0$ se tiene que $p_1 \mid q_1 \cdots q_l$ y por lo tanto $p_1 \mid q_i$ para algún $i \in \{1, \dots, l\}$. Supongamos sin perdida de generalidad que $p_1 \mid q_1$. Como p_1 y q_1 son ambos primos tenemos necesariamente que $p_1 = q_1$. Queda entonces $m_1 = p_2 \cdots p_k = q_2 \cdots q_l$, pero como $m_1 \notin T$ se contradice la hipótesis de partida.

Teorema (Teorema de Euclides)

Existen infinitos números primos.

Demostración.

Supongamos que existe un número finito de números primos, por ejemplo, los primos p_1,p_2,\ldots,p_k . Sea $m=p_1p_2\cdots p_k+1$. Puesto que m>1 por el teorema fundamental de la aritmética m es divisible por algún primo, digamos $p\in\{p_1,\ldots,p_k\}$. Luego $p\mid m$ y $p\mid p_1p_2\cdots p_k$, por lo que p debe dividir también a $m-p_1p_2\cdots p_k=1$, lo que es imposible. \qed

Criba de Eratóstenes

Teorema (Proposición de Fermat)

Un entero $n \in \mathbb{Z}$ con n > 1 es compuesto si y sólo si es divisible por algún primo $p \leq \sqrt{n}$.

Criba de Eratóstenes. Se trata de un método para obtener los números primos menores que n

- Escribimos la lista de enteros $2, 3, \ldots, n$.
- Marcamos el primer entero de la lista 2 como primo, y tachamos todos los múltiplos de 2.
- Buscamos el siguiente enero de la lista no tachado, lo marcamos, y tachamos todos los múltiplos de ese primo.
- Repetimos el mismo procedimiento hasta haber marcado o tachado todos los elementos de la lista.