
Departamento de Informática
Universidad Carlos III de Madrid

Bachelor’s Degree in Data
Science and Engineering

Programming
June 2019

General indications

• You have 3 hours.

• You are not permitted to leave the room during the exam unless you have handed it in.

• The exams cannot be written in pencil.

• All answer sheets should be numbered and with your name on them.

• Built-in functions not seen during the course are forbidden; their use will be penalized.

• Notes, slides, books, etc. are allowed; electronic devices are not allowed.

Exercise 1 (5p)

Minesweeper is a game where the aim is to correctly identify the location of all mines in a grid. The player is given
a grid of hidden cells in the beginning of the game. Each cell contains either a mine (indicated by *), or an empty
cell. Empty cells have a number indicating the count of mines in the adjacent cells. (Two cells are adjacent to
each other if they are connected horizontally, vertically, or diagonally.) Empty cells can have counts from 0 (no
adjacent mines) up to 8 (all adjacent cells are mines). Cells with a 0 indicate that there are not adjacent mines
to that particular cell; cells with a 1 indicate that there is one mine adjacent to that particular cell; cells with a
2 indicate that there are two mines adjacent to that particular cell; and so on. The game starts creating a grid
with the size and number of mines specified by the player. The grid is initially hidden. In each turn, the player
introduces the row and the column of the cell to reveal. Then the grid with all revealed cells is printed. If the
cell contains a mine, the game ends and the player loses the game. Otherwise, the number of adjacent mines is
revealed. The game continues until all non-mine cells are revealed, case in which the player wins the game. Finally,
the game reveals the grid.

The aim of this exercise is to implement the Minesweeper game, where the grid consists of a matrix NxM. The
matrix is represented as a list of lists that stores objects of type Cell, which is defined as follows:

class Cell:

def __init__(self):

self.mine = False #indicates if the cell contains a mine or not

self.hidden = True #indicates if the cell is hidden

self.character = None #indicates the character stored in the cell

You are asked to:

1. (1pt) Create a function createMatrix(rows,columns,mines) that given the number of rows, the number of
columns, and the number of mines, returns a matrix of the given size and with the given number of mines
randomly distributed in different cells of the grid.

2. (2pt) Create a function setNumbers(matrix,rows,columns) that updates the matrix by including the count
of adjacent mines for each cell in the matrix.

3. (0.25pt) Create a function printMatrix(matrix) that prints the matrix. If a cell is hidden, it will print -.
Otherwise, it will print the character of the cell.

4. (0.25pt) Create a function revealMatrix(matrix) that reveals all cells in the matrix.

5. (1.5pt) In a main program, ask the player the size of the grid and the number of mines and simulate the
game. The game must warn the player when any of the introduced information is out of bounds and ask for
it again. Implement auxiliary methods if needed.

An example of the expected execution when loosing the game:

Number of rows 2

Number of columns 3

Number of mines 1

Let’s start the game!

Row? 0

Column? 3

Row or column out of bounds!

Row? 1

Column? 0

- - -

* - -

You lost!!

1 1 0

* 1 0

An example of the expected execution when winning the game:

Number of rows 2

Number of columns 3

Number of mines 2

Let’s start the game!

Row? 0

Column? 2

- - 1

- - -

Row? 1

Column? 0

- - 1

2 - -

Row? 1

Column? 1

- - 1

2 2 -

Row? 1

Column? 2

- - 1

2 2 1

You won!!

* * 1

2 2 1

Solution

from random import randrange

c l a s s Ce l l :

de f i n i t (s e l f) :
s e l f . mine = False
s e l f . hidden = True
s e l f . cha rac t e r = None

de f createMatr ix (rows , columns , mines) :
matrix = []
f o r in range (rows) :

r = []
f o r in range (columns) :

r . append (Ce l l ())
matrix . append (r)

whi l e mines > 0 :
r = randrange (rows)
c = randrange (columns)
i f not matrix [r] [c] . mine :

matrix [r] [c] . mine = True
matrix [r] [c] . cha rac t e r = ’∗ ’
mines −= 1

return setNumbers (matrix , rows , columns)

de f setNumbers (matrix , rows , columns) :

f o r r in range (0 , rows) :
f o r c in range (0 , columns) :

i f not matrix [r] [c] . mine :
n = 0
i f r > 0 and matrix [r −1] [c] . mine :

n += 1
i f r > 0 and c < (columns − 1) and matrix [r −1] [c +1] . mine :

n += 1
i f c < (columns − 1) and matrix [r] [c +1] . mine :

n += 1
i f r < (rows − 1) and c < (columns − 1) and matrix [r +1] [c +1] . mine :

n += 1
i f r < (rows − 1) and matrix [r +1] [c] . mine :

n += 1
i f r < (rows − 1) and c > 0 and matrix [r +1] [c−1] . mine :

n += 1
i f c > 0 and matrix [r] [c−1] . mine :

n += 1
i f r > 0 and c > 0 and matrix [r −1] [c−1] . mine :

n += 1
matrix [r] [c] . cha rac t e r = s t r (n)

re turn matrix

de f pr intMatr ix (matrix) :
f o r row in matrix :

f o r c in row :
i f c . hidden :

p r i n t (’ − ’ , end = ’ ’)

e l s e :
p r i n t (’ %s ’%c . character , end=’ ’)

p r i n t ()

de f checkBound (c , bound) :
i f c >= 0 and c < bound :

re turn True
return Fal se

de f revea lMatr ix (matrix) :
f o r row in matrix :

f o r c in row :
p r i n t (c . character , end=’ ’)

p r i n t ()

main program

rows = i n t (input (’ Number o f rows ’))
columns = i n t (input (’ Number o f columns ’))
mines = i n t (input (’ Number o f mines ’))
p r i n t (” Let ’ s s t a r t the game ! ”)
counter , seen = rows ∗ columns − mines , 0
end = False
matrix = createMatr ix (rows , columns , mines)
whi l e not end :

repeated = False
whi l e not repeated :

r = i n t (input (’Row? ’))
c = i n t (input (’ Column? ’))
i f not checkBound (r , rows) or not checkBound (c , columns) :

p r i n t (’Row or column out o f bounds ! ’)
e l i f matrix [r] [c] . hidden :

matrix [r] [c] . hidden = False
repeated = True
seen += 1

pr intMatr ix (matrix)
i f matrix [r] [c] . cha rac t e r == ’ ∗ ’ :

p r i n t (’\nYou l o s t ! ! ’)
end = True

e l i f seen == counter :
p r i n t (’\nYou won ! ! ’)
end = True

revea lMatr ix (matrix)

Exercise 2 (5p)

The Way of St. James is a network of pilgrim ways coming together to the Cathedral of Santiago de Compostela.
There is not only one single way of the Way of St. James, there are different ways, starting at various places. A
traveler’s company offers tours to the most popular ways. Therefore, it stores information about each of them. A
way is defined by a name, a starting point, an end point, a level of difficulty, a total length, and a tuple with the
length of the sections that form the way. The length of each section ranges from 10 to 30 kilometers. The total
length of the way is calculated by adding the length of each section. The level of difficulty could be easy, medium,
or hard.

1. (1pt) Define the needed classes and implement their constructors.

2. (1pt) Implement a method that returns a list with the three consecutive sections of a way with the highest
accumulated length. For instance: in a way with sections (50,65,50,75,80,70,30), the method returns [75,80,70].
Indicate the class where this method belongs to.

3. (1.25pt) Implement a method that given a dictionary of ways and two points A and B returns True if it is
possible to create a combined way by joining two ways, where the first one starts at point A and ends at any
point Y; and the second one starts at point Y and ends at point B. Otherwise, it returns False. Indicate the
class where this method belongs to.

4. (0.75pt) Implement a method that given a dictionary of ways and a point returns True if the point is the
starting or end point of any of the ways. Otherwise, it returns False. Indicate the class where this method
belongs to.

5. (1pt) In a main program:

• Create a list of 30 points with consecutive names: Point1, Point2, . . . , Point30.

• Create a dictionary of 10 ways, also with consecutive names Way1, Way2, . . . , Way10. The starting and
end points must be randomly chosen from the previous point list. The number of sections of each way
will be a random number between 10 and 20. The length of each section is also randomly chosen as well
as the level of difficulty.

• Ask the user to enter two points PointA and PointB and print on the screen if there is any combined
way that joining two ways goes from PointA to PointB. If any of these points does not belong to any
way, the program must warn the user and ask for a new point.

Solution

from random import randrange

c l a s s Way:

de f i n i t (s e l f , name , s ta r t , end , d i f f i c u l t y , sectionsNumber) :
s e l f . name = name
s e l f . s t a r t = s t a r t
s e l f . end = end
s e l f . d i f f i c u l t y = d i f f i c u l t y
s e l f . l ength = 0
s e l f . s e c t i o n s = ()
f o r i in range (sectionsNumber) :

s e l f . s e c t i o n s += (randrange (1 0 , 3 0) ,)
s e l f . l ength += s e l f . s e c t i o n s [i]

de f La rg e s tSe c t i on s (s e l f) :
l a r g e s t S e c t i o n s = [0 , 0 , 0]
l e n g t h S e c t i o n s = 0
f o r i in range (l en (s e l f . s e c t i o n s)−3):

p r i n t (’ range ’ , i)

l = s e l f . s e c t i o n s [i] + s e l f . s e c t i o n s [i +1] + s e l f . s e c t i o n s [i +2]
i f l e n g t h S e c t i o n s < l :

l e n g t h S e c t i o n s = l
l a r g e s t S e c t i o n s [0] = s e l f . s e c t i o n s [i]
l a r g e s t S e c t i o n s [1] = s e l f . s e c t i o n s [i +1]
l a r g e s t S e c t i o n s [2] = s e l f . s e c t i o n s [i +2]

re turn l a r g e s t S e c t i o n s

de f combinedWay(ways , s t a r t , end) :
f o r in i t i a lWay in ways :

i f ways [in i t i a lWay] . s t a r t == s t a r t :
f o r finalWay in ways :

i f ways [finalWay] . s t a r t == ways [in i t i a lWay] . end and
ways [finalWay] . end == end :

re turn True
return Fal se

de f i s P o i n t (ways , po int) :
f o r way in ways :

i f ways [way] . s t a r t == point or ways [way] . end == point :
r e turn True

return Fal se

main

d i f f i c u l t y = [’ eassy ’ , ’ medium ’ , ’ hard ’]

po in t s = []
f o r i in range (1 0) :

po in t s . append (’ Point ’ + s t r (i))

ways = {}
f o r i in range (5) :

name = ’Way’+ s t r (i)
s t a r t = end = randrange (0 , l en (po in t s))
whi l e s t a r t == end :

end = randrange (0 , l en (po in t s))
ways [name] = Way(name , po in t s [s t a r t] , po in t s [end] , d i f f i c u l t y [randrange (0 , 3)] ,

randrange (10 , 21))

a rePo int s = False
whi l e not arePo int s :

wayStart = input (’ S ta r t i ng po int : ’)
wayEnd = input (’End point : ’)
i f i s P o i n t (ways , wayStart) and i s P o i n t (ways , wayEnd) :

a rePo int s = True

i f combinedWay(ways , wayStart , wayEnd) :
p r i n t (’ There i s a new way between %s and %s ’%(wayStart , wayEnd))

e l s e :
p r i n t (’ There i s not a new way between %s and %s ’%(wayStart , wayEnd))

