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8 Taylor polynomial

In this chapter we study a very useful method to approximate functions, obtain limits,
among other uses: the Taylor polynomial.

8.1 Polynomial approximation of functions

Theorem 1 (Weierstrass’ approximation theorem):
Let f be a continuous function on [a, b]. Then, Ve > 0,3 a polynomial P(x) such that

|f(x) — P(x)| <e V€ la,b].

This is a remarkable statement: it means that an arbitrary continuous function can be
approximated to arbitrary precision by a polynomial! This is visualized in Fig. 1.

Figure 1: Illustration of Weierstrass’ approximation theorem: For any € > 0, there is
a polynomial P(x) such that it uniformly close to f(z) in an interval [a, b].

By approximating an arbitrary function by a polynomial, it is useful to state its ana-
lytical properties. For that the following definition comes in handy:



Definition 1 (differentiability classes):
A function f is of differentiability class C* if the derivatives f’, f”, ..., f*) exist and
are continuous.

Comments:

(1) Since differentiability includes continuity, continuity is implied for all derivatives
except for f).

(2) If a function has derivatives of any order, it is called infinitely (often) differentiable,
smooth, or of class C°.

(3) Depending on whether the function is defined on an open or closed interval, there
are slightly different meanings, in particular implying lateral differentiability on the
endpoints of a closed interval.

Theorem 2 (polynomials are smooth):
Let P be a polynomial of order n. Then, P is infinitely (often) differentiable in R.

Since differentiability includes continuity, it is not necessary to state that P is contin-
uous (although it is true). We already knew that a polynomial is differentiable. What
is new here is the generalization to higher derivatives. As we know, the derivative of
a polynomial of order n yields a polynomial of order n — 1. Therefore, differentiating
a polynomial (of order n) n times produces a constant. Then, any further derivatives
(and there is nothing preventing us from taking higher derivatives) become zero.

8.2 Taylor’s theorem

The following theorem provides a very useful tool to represent sufficiently often differ-
entiable functions by polynomials, as it not only provides the approximation, but also
a way to evaluate the goodness of the approximation.

Theorem 3 (Taylor’s theorem):
Let f be of class C™ on the interval [a, b] and suppose that the (n + 1)-th derivative of
f exists on (a,b). Let zg € [a,b]. Then, Vz € (a,b), Ic between = and x( such that

f(x) = Pozg() + Rz (2),

with P, ., (x) being the Taylor polynomial and R, ,,(x) the remainder, given by
f" (o) f (o)

Poao(®) = flo) + f'(w0)(x — 20) + T(x — 1)+ + T(fﬂ — x0)",
(n+1) (.
Run(@) = e =0

Comments:
(1) This is also called the Taylor expansion of f about (around) .
(2) The specific value g is the point about which we approximate the function and is
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typically given. If g = 0, the polynomial is also called the Maclaurin polynomial.

(3) The dependence on x resides solely in the polynomial terms (x — x¢)* since f(zo),
f'(xg), f"(xg),... are all scalar values. To approximate (replace) a function f by its
Taylor polynomial it is necessary to compute the aforementioned derivatives.

(4) The quality of the approximation (or the goodness of the fit) can be assessed by
calculate the remainder term (if possible) or to give an upper bound to it.

(5) The quality of the approximation typically increases if (a) the order of the Taylor
polynomial increases and (b) if x approaches . Obviously, for x = x, the Taylor
polynomial is simply f(z¢), showing that Taylor’s theorema is only useful for x # x,
and hence an appropriate choice of zy is important (not too far from the values of
where f should be evaluated).

(6) This formulation of R, ,,(x) is called the Lagrange remainder. There are other
variants, namely the Cauchy form and the integral form (not shown here). It is im-
portant to note that in general there is no way to know what specific value ¢ takes.
(7) There are nice animations of Taylor polynomial approximations at:

https://en.wikipedia.org/wiki/Taylor’s_theorem

8.3 Applications of Taylor’s theorem

The fundamental application of Taylor’s theorem is to approximate (replace) a pos-
sibly complicated function by a polynomial. Polynomials are C*° functions and very
“well-behaved”, as it is easy to compute any derivative of it, obtain its graph, etc. The
remainder term can be used to check the quality of the approximation. Among other
uses, Taylor’s theorem can be used to evaluate limits and proving inequalities.

Example 1:

(a) Approximate f(z) = sin(x) by its Taylor polynomial of order 3 about xy = 0. (b)
Then give an upper bound to the absolute error in the interval [0,1]. (c¢) Compare
with the actual absolute error at z = 0.5.

(a) We apply Taylor’s theorem as indicated:

f" (o) J®(x0)

f(z) = (o) + f'(zo)(w — wo) + (2 — w0)* + TR 2o)® + m
" (3) (4)
2 6 24
We have to compute derivatives up to 4th order:
Toorc | xpg=0
f sin(xg) 0
f' | cos(z) 1
f" | —sin(xg) 0
f@® | —cos(xg) | —1
f@ | sin(c)
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With this we obtain for the Taylor polynomial:

1
Pso(z) =2 — éx?’,

and, overall:

where ¢ is between x¢y = 0 and z.

(b) In principle, x can be any number, but we know that sin(z) is bound between —1
and 1 while the polynomial will go to oo for x — oo, and the approximation will break
down. This example limits = to the interval [0, 1] and we use the remainder term to
determine the upper bound to the absolute error in that interval:

sin(c) )
24

where the maximum is taken over all values x € [0,1]. The absolute value is taken
because we are interested in the absolute error of the approximation (and do not care
whether the difference f(x) — P, ., () is positive or negative).

maz(|Rso(z)|) = maz (

In the interval [0,1], x? takes its maximum at # = 1. The same holds for the sine
function (¢ is between 0 and 1), and therefore

sin(1)

max(| Ry o(z)]) = o

‘ ~ 0.0351 (4 d.p.).

1
Result: Between [0, 1], sin(z) can be approximated by  — 2% with a maximum abso-

lute error of 0.0351 (to a precision of 4 decimal places).

A comment may be due here: It would be possible to obtain a weaker (larger) upper
bound by using that |sinz| <1 for all z € R:

1
maz(|Rsp(x)]) = 'ﬂ‘ ~ 0.0417 (4 d.p.).

For example, if the interval given was [0, b], with b € R, we would have to use |sinz| < 1
and keep the term b*:

max(|Rso(x ‘—b4

This result tells us that the approximation f(x) =~ P;o(x) becomes bad if b > 1.



(c) We have to compare f(0.5) and Ps(0.5):

f(0.5) = sin(0.5) =0.479426 (6 d.p.)
0.5 23
P;(0.5) = 05— — =— =0.479167 (6 d.p.
4(05) = (6dp)
The actual absolute error is

E(0.5) = [0.479426 — 0.479167| = 0.000259 = 2.59 x 10~
This number is smaller than maz(|Rs0(x)|), as expected.
Example 2:

Calculate the Taylor polynomial of order 3 of f(x) = x® about xy = 2 together with
the remainder term.

We write
//x0 ) (3) T 5 (4) c A
f@) = flao) + Fan)e a0 + L0 @ LR g TR
7 (3) (4) Is
= f2Q)+ f(2)(z—2)+ / 2(2) (x—2)% + fT(Q)(x —2)% + f2—4()(x —2)%

We have to compute derivatives up to 4th order:

ToOrcC | Tg=2
fl % 8
f 3z} 12
f” 6$0 12
f(3) 6 6
f@ 0

With this we obtain:

Pso(z) = 8+12(:1:—2)_|_7@_2)2_{_2@_2)3

IQQ(I) == éz(f-—2)4::0
The remainder term is zero, and consequently we have f(z) = 2° = Py(x). This can
be easily checked by expanding the terms of Ps5. Furthermore, if one chooses o = 0
in this example, one directly calculates Pso(x) = x3. This reflects a general result: the
Taylor polynomial of order n of a polynomial of order n are identical.

Example 3:

Calculate the following limit using the Taylor expansions of the the involved functions:
. cosx —e'+x
lim ———.

x—0 I2
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Substitution of z = 0 yields an indetermination 0/0. Since the denominator is z?, we

develop the functions cos z and e up to that order, using xy = 0 since this is the point
at which the limit is taken.

(cosx)"(0)

5 (z —0)* + h.o.t.

cosz = cos(0) + (cosz)(0) - (x —0) +
1
= 1- 51'2 + h.O.t.,
e = e+ (e")(0) (v —0)+ —2—+2
1
= 142+ 5:}52 + h.ot.,
where h.o.t. stands for higher order terms. Now, we proceed

1 1
. cosr—e€er+x ) 1—§x2—1—x—§x2—|—x+h.0.t. =224+ h.ot.
lim ————— = lim =lim —M—
z—0 1:2 z—0 xz xz—0 :p2

This simplifies to

. cosr—e*+zx . h.ot.
lm ———— = —1+ lim
z—0 2 -0 2
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but as we know the higher order terms contain contributions proportional to 2% + - - -,
implying that the latter limit is zero and we have as result

lim cosx —e’ + I

x—0 [Ij‘2
Example 4:
We approximate f(x) = €® in the interval [0,1] by a Taylor polynomial. Of which
order needs the polynomial to be for the absolute error to be smaller than 0.057

We select zp = 0 and the Taylor polynomial of e* becomes

1 1 .,
Pn,O(l') = 1+$+§1’2+§x3++ml"

but what we really need to respond the question is the remainder term

C

_ € n+1
Rno(w) = CES

where ¢ is between 0 and 2 and we have to solve for n

eC

(n+1)!

n+1

maz(|Ruo(2)]) = max ( x

) < 0.05.

Since z is limited to 1 and the exponential function is strictly increasing, the maximum
value of e in the interval [0, 1] is e¢'. The power function "™ also is strictly increasing
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in the interval [0, 1] and takes its maximum value at x = 1. We obtain

n+1
< 005
1 < 0.05
(n+1)! e’
e
N > — ~54.4.
(n+1) 0.05

Since 4! = 24 and 5! = 120, we conclude that we have to approximate e* at least by
Py o(z) (for the absolute error in [0, 1] to be smaller than 0.05).

More examples see the exercise sheet.



