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7 Analysis of functions and their graphical repre-

sentation

In this chapter we apply the methods we have studied in the previous chapters to
analyse functions and in particular to perform graphical representations.

7.1 Asymptotes, monotonicity, and curvature of a function

7.1.1 Monotonicity and curvature

Theorem 1 (graphical characterization of differentiable functions I):
Let f be a function continuous in [a, b] and differentiable in (a, b).
(i) If f ′(x) ≥ 0 for x ∈ (a, b), then f is (monotonically) increasing in (a, b).
(ii) If f ′(x) ≤ 0 for x ∈ (a, b), then f is (monotonically) decreasing in (a, b).
(iii) If f ′(x) = 0 for all x ∈ (a, b), then f is constant in (a, b).

Comment:
If in (i) the ≥ sign is replaced by >, and in (ii) the ≤ sign is replaced by <, then we
refer to the function as strictly monotonically in- or decreasing. Often, and in partic-
ular when it is clear from the context, the word monotonically is then suppressed.

Theorem 2 (second derivative):
Let f be differentiable with f ′(x) = g(x). If the derivative of g(x) exists (according to
the definition of differentiability), then g′(x) represents the second derivative of f(x)

and we write g′(x) = f ′′(x) =
d

dx

(
df

dx
(x)

)
=
d2f

dx2
(x) =

d2f(x)

dx2
.

Comment:
We already interpreted the derivative as “rate of change”. For example, we interpreted
the velocity as (first) derivative, i.e., as limit of the difference quotient of the change of
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position in an interval of time. The second derivative is therefore the “rate of change”
of the (first) derivative. For example, the change of velocity in an interval of time
represents the acceleration of the body in motion.

In this way, higher derivatives can be introduced:

Definition 1 (higher derivatives):

Let f be n-times differentiable. Then, f (n)(x) =
dnf

dxn
(x) =

dnf(x)

dxn
represents the n-th

derivative of f .

Higher derivatives can be applied, e.g. using L’Hôpital’s rule repeatedly when an inde-
termination is replicated, or in the analysis of curves. For the latter, we need additional
definitions:

Definition 2 (critical point):
(i) Let f be a non-constant function, differentiable in c with f ′(c) = 0. Then, c is a
critical point of f .
(ii) Let f be a function with domain D. If f is not differentiable in x = c ∈ D, c is a
critical point of f .

Example 1: Find the critical points of f(x) = x3 − 9x2 + 24x− 10.

f is a polynomial and as such differentiable in R. Its critical points are the solutions
of f ′(c) = 0: f ′(x) = 3x2 − 18x + 24 = 3(x2 − 6x + 8) = 3(x − 2)(x − 4) = 0, whose
solutions are c = 2 and c = 4.

Example 2: Find the critical points of f(x) = |x|.

We have seen this function earlier. Specifically, f ′(x) = 1 if x > 0 and f ′(x) = −1 if
x < 0. There is no critical point according to Def. 2(i), but one according to Def. 2(ii)
since f is not differentiable in x = 0. There is a critical point in x = 0.

Theorem 3 (extrema: criterion of the first derivative):
Let f be a differentiable function and c a critical point of f . Then:
(i) If f ′(x) changes from negative to positive in c, there is a local minimum in (c, f(c)).
(ii) If f ′(x) changes from positive to negative in c, there is a local maximum in (c, f(c)).

Comments:
(1) This theorem can be understood as the specification under which the inversion of
the theorem of local extrema is true. Recall that f ′(c) = 0 does not imply that there
is a local extremum in c.

(2) Sometimes, we refer to extrema (or other points of a function) specifying its value
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x only. Nevertheless, we know that in a graph, an extremum (or any other point on
the curve) is characterized by a set of two numbers, c and f(c). There are contexts
where it is important to state both numbers.

Example 3: f(x) = |x|.

We know from Ex. 2 that f has a critical point in x = 0 and that f is differentiable in
R \ 0. We know that f ′(x) < 0 for x < 0 and f ′(x) > 0 for x > 0. Following Theorem
3, f(x) = |x| has a local minimum in x = 0.

Example 4: f(x) = x3.

The function f is non-constant and differentiable in R. The derivative of f is f ′(x) =
3x2. Then, the condition f ′(c) = 0 is verified for c = 0, critical point of f . Neverthe-
less, f ′(x) = 3x2 > 0 for x < 0 and also for x > 0, i.e., f ′(x) does not change sign in
the critical point and there is no local extremum according to Theorem 3 (but compare
with the comment on the theorem of extrema in the last chapter).

In the following theorem, we introduce fundamental notions about the curvature of a
function (convex/concave) and characterize inflexion points that separate areas of con-
vex and concave curvatures. These concepts rely on the signs of the second derivative,
in a similar way as the signs of the first derivative indicate the growth of a function
(increase/decrease) and establish extrema as points that separate increasing from de-
creasing functions.

Theorem 4 (graphical caracterization of differentiable functions II):
Let f(x) be a function whose second derivative f ′′(x) exists in (a, b).
(i) If f ′′(x) > 0 for x ∈ (a, b), then f is convex in (a, b).
(ii) If f ′′(x) < 0 for x ∈ (a, b), then f is concave in (a, b).
(iii) If f ′′(c) = 0 for c ∈ (a, b) and f ′′(x) changes its sign in x = c, then f has an
inflexion point in c.

Example 5: We consider the function of Ex. 4: f(x) = x3. Its second derivative is
f ′′(x) = 6x. According to Theorem 4(iii), in c = 0 the second derivative is zero, and
furthermore f ′′(x) < 0 for x < 0 and f ′′(x) > 0 for x > 0, i.e., f ′′ changes its sign and
in x = 0 we find an inflexion point. According to (i) and (ii), the function changes
from concave to convex.

Comments:
(1) A convex curve in a given point grows stronger than the tangent in that point and
f ′(x) is strictly increasing.

(2) A concave curve in a given point grows weaker than the tangent in that point and
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f ′(x) is strictly decreasing.

(3) In a slight abuse of notation, the curvature of a graph is also referred to as its
“convexity” (although the shape may be concave).

(4) Another example: If f represents the daytime (duration of sun visible above the
horizon), then f ′ represents the change of daytime. After the summer solstice, nights
are getting longer (f ′(x) < 0) until the winter solstice (i.e., from June to December
in the Northern hemisphere). Nevertheless, the rate with which the daylight changes
grows only from the summer solstice to the autumn equinox (f ′′(x) > 0), and later
decreases from the autumn equinox to the winter solstice (f ′′(x) < 0). The solstices
represent the local extrema and the equinoxes the inflexion points.

Theorem 5 (extrema: criterion of the second derivative):
Let c be a critical point of f . If f ′′(c) exists, then:
(i) If f ′′(c) > 0, then there is a local minimum in x = c;
(ii) If f ′′(c) < 0, then there is a local maximum in x = c;
(iii) If f ′′(c) = 0, the criterion is not conclusive (there may be a minimum, maximum
or neither).

Example 6: Let f(x) = x2. We calculate the first derivative and require it to vanish:
f ′(c) = 0, implying that 2c = 0. Therefore, there is a critical point in x = 0. We can
use Theorem 3 to establish that there is a local minimum in x = 0, but we can also
use Theorem 5: f ′′(x) = (2x)′ = 2. For all x, 2 > 0, and specifically f ′′(0) > 0 and
there is a local minimum in x = 0.

Example 7: Let us consider the function from examples 4 and 5: f(x) = x3. The
second derivative is f ′′(x) = 6x. According to Theorem 5(iii), in x = 0 (locus of
the critical point) the second derivative vanishes and the criterion is not conclusive.
Actually, we already established in Ex. 5 that in x = 0 there is an inflexion point and
there is no contradiction.

7.1.2 Asymptotes

Asymptotic behavior of functions was already considered in the chapter on limits. In
particular, when lim

x→c
= ∞ or lim

x→c
= −∞ (or for lateral limits, for that matter), the

curve of the function shows a vertical asymptote.

Example 8: f(x) =
1

x− 1
which shows lim

x→1+
=∞ and lim

x→1−
= −∞ and which leads

to a vertical asymptote at x = 1.

Also, limits as x→ ±∞ were considered. For example, lim
x→∞

ex =∞, so the function is

not approaching a finite limit value. However, lim
x→∞

e−x = 0, which represents a finite
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limit value L = 0. Consequently, the curve of e−x approaches the horizontal asymptote
L = 0 as x → ∞. Of course, horizontal asymptotes can also be found for x → −∞,
depending on the function.

7.2 Graphical representation of a function

We have now at our disposal the most fundamental tools for sketching functions graph-
ically:

1. Domain. We know that the domain is typically an interval being a subset of R,
but a function domain can also be the union of various intervals, and can exclude
points.

2. Symmetries. Functions may show a fundamental symmetry like f(x) = f(−x)
(even function, e.g., x2, cos(x)), f(x) = −f(−x) (odd function, e.g., x3, sin(x)),
or f(x) = f(x+ c), c 6= 0 (periodic function, e.g. sin(x) with c = 2π).

3. Discontinuities. We know how to detect removable, jump, and essential (includ-
ing infinite) discontinuities and how they are represented.

4. Points of non-differentiability (for continuous functions). For example, f(x) = |x|
is not differentiable at x = 0, with the graph showing a peak there. Points of non-
differentiability often show peaks or cusps if the lateral limits of the differential
quotient do not coincide.

5. Intersection points with axes: The condition x = 0 gives the intersection with
the ordinate, the condition f(x) = 0 the intersection(s) with the abscissa, also
called roots or zeros.

6. Growth and local extrema. This is evaluated with help of the first derivative
(increasing for f ′(x) > 0, decreasing for f ′(x) < 0, and an extremum for f ′(x)
changing sign). The critical points are the points of non-differentiability and
those which fulfill f ′(x) = 0.

7. Curvature and inflexion points. This is evaluated with the help of the second
derivative (convex for f ′′(x) > 0, concave for f ′′(x) < 0, and an inflexion point
for f ′′(x) changing sign).

8. Asymptotes. Horizontal asymptotes with value L correspond to solutions of
lim

x→±∞
f(x) = L (only if the domain of the function extends to ±∞) and vertical

asymptotes at x = c correspond to solutions of lim
x→c

f(x) = ±∞.

9. Global extrema. Candidates are the critical points and the values of the function
at the boundaries (in closed intervals, continuous functions take their extrema in
the interval).

Examples are provided in the problem sheet.
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