Unit 2. Programming
Fundamentals

2.1 Computer Problem Solving Phases
2.2 What is an algorithm?

2.3 Algorithm representations
2.4 Algorithm design method
2.5 Algorithm elements

ucdm | Universidad Carlos lll de Madrid DEI 'IIF

Interactive Systems Group

Computer Problem Solving

Algorithm development phase

o Analyze: Understand the problem

o Design an algorithm

o Test the algorithm

Implementation phase

o Code: translate into a programming language
o Test the program

Maintenance phase

o Maintain: Adapt to new requirements

What 1s an algorithm?

R.A.E.: “An ordered and finite set of
operations which allows finding the solution

of a problem ”

We use different algorithms every day:

o Recipies

o D.LY. furniture

o Explaining to somebody how to get somewhere
o Driving a car

What 1s an algorithm?

An algorithm Is set of instructions for solving
a problem or sub-problem in a finite amount
of time using a finite amount of data

Properties of an Algorithm:

o It must be precise and unambiguous

o It must give the correct solution in all cases
o It must eventually end

What 1s an algorithm?

Is this Spanish Omelet recipe an algorithm?

Cut up the potatoes into cubes half a centimeter in diameter. Fry
them using plenty of oil on a low flame. Add onions and fry until
transparent. Put the mixture into a separate bowl and set aside to
cool. Beat the eggs in a bowl, add some salt and mix well with the
potatoes and the onions. Put the mixture in the frying pan again with
some more oil. Wait until it sets, turn it upside down and let it set
again over a low flame, making sure not to burn it.

Algorithm representations

Algorithms can be described using
o Natural language

o Flowcharts

o Pseudocode

o Programming Languages

Algorithm representations

Natural Lan guage. Add the first score to the second

one and divide the total by two.
The student passes the exam

_ when the result is greater than 5.
o Simple

0 Too verbose

0 Too "context-sensitive"-
relies on experience of
reader

Q Error-prone

Algorithm representations

Flowchart: combines symbols and

flowlines, to figuratively show the operations
of an algorithm

o Closer to a computer
representation

o Algorithms can be described
using a few symbols

o Non-intuitive symbols
o Text is natural language

o Large algorithms can be difficult
to represent

(Start)

\4

Final score =0

v
Get first test
score

Add first test score
to final score

Get second
test score
y

Add second test score
to final score

A 4

Divide final score by
2

v

[

Print ‘Student Print ‘Student

passed the didn’t pass the
course’ course’

Algorithm representations

PS eu d 0CO d e- Natural write iIntroduce the first score’

] read scorel
Ianguage constructs write introduce the second score’
modeled to look like read score2
statements available in - 300“91/ : scorez

: result = sum
many programming if result is greater than 5
Ianguages write “Student passed the course ”
else
write “Student didn 't pass the

o Comprenhensible as natural
language but unambiguous end if

o Independent from the
computer

course ”

Algorithm representations

scorel=input(‘Introduce the first score?\n *;

Pro g Framm | N g | an g u ag @: score2=input(‘Introduce the first score?\n *;
a set of pre-defined words that can ~ Sum = scorel + scorez;
be combined into statements thata result=sum/2;

computer can understand and if (result>5)
execute sprintf(Student passed the course);

else
sprintf(Student passed the course ’);
o Comprenhensible both to humans end if
and to computers

o Algorithms described in diffferent
languages will look different

Algorithm development phase

Algorithm development phase
o First step: Understand the problem
o Second step: Design an algorithm

First Step: Understand the problem

What do | know about the problem?

What is the information that should be processed to find
the solution?

What does the solution look like?

Identify input information and output information

o Problem example: Find first non-repeated character in a
sentence

Example of input and output information for this problem:
Input sentence: The cat is in the kitchen
Algorithm output:

First Step: Understand the problem

What do | know about the problem?

What is the information that should be processed to find
the solution?

What does the solution look like?

Identify input information and output information

o Problem example: Find first non-repeated character in a
sentence

Example of input and output information for this problem:
Input sentence: The cat is in the kitchen
Algorithm output: a

Second Step: Design the Algorithm

Three sub-steps:
1. Devise a plan: general cases and special cases
2. Test the plan for different inputs (trace)

3. Refine the solution
|dentify similarities and patterns
Make the solution more general
Consider algorithm efficiency
Is there an alternative?

Second Step: Design the Algorithm

Devise a plan:

o Some techniques to approach the design of the
algorithm
Look for related problems already solved (pattern matching)
Working backwards (reverse engineer)
Divide and conquer

Second Step: Design the Algorithm

“Divide and congquer” method:

Divide the problem into one or more sub-problems
Conquer sub-problems by solving them recursively
If the problem is simple enough solve it directly

As a result a hierarchical structure of problems and sub-
problems is obtained

The solutions of the sub-problems can then be
combined to solve the original problem

Second Step: Design the Algorithm

= “Divide and conquer” method.:

Sub- problem 1 Sub-problem 2 Sub-problem 3

Sub- Sub-
problem 1.1 problem 1.2

Solution 2 Solution 3

Solution 1.1 Solution 1.2 /

Second Step: Design the Algorithm

Advantages of the “Divide and conquer” method:

Q
Q
Q

Smaller problems are easier to comprehend
Solutions to smaller problems are easier to test

Sub-solutions tend to be simpler than when
considered as a whole

Different designers can work in different parts of the
problem in parallel

The program will be easier to maintain
Reuse of sub-solutions for other problems

Algorithm Design

Exercise: Design an algorithm for planning a
birthday party

Algorithm Design

Exercise: Design an algorithm for planning a
birthday party

o Understand the problem

Algorithm Design

Exercise: Design an algorithm for planning a
birthday party

o Understand the problem:
Budget for the party?
Who am | going to invite?
Where is the party going to be?
What am | going to offer for dinner?

Algorithm Design

Exercise: Design an algorithm for planning a
birthday party

o Divide the problem:

Algorithm Design

Exercise: Design an algorithm for planning a
birthday party

o Divide the problem:
Problem 1. Obtain the birthday party guest list
Problem 2: Book the venue for the party
Problem 3. Obtain the shopping list

Algorithm Design

Exercise: Design an algorithm for planning a
birthday party

o Divide the problem:

Problem 1. Obtain the birthday party guest list
0 1.1: Send invitations: email? phone?

0 1.2 : Receive confirmations

0 1.3 : Write down the final list

Problem 2: Book the venue for the party
Problem 3: Obtain the shopping list

Algorithm Design

Exercise: Design an algorithm for planning a
birthday party

o Divide the problem:
Problem 1. Obtain the birthday party guest list

Problem 2: Book the venue for the party
0 Less than 15 people: at home
0 More than 15: find and book a venue

Problem 3: Obtain the shopping list

Second Step: Design the Algorithm

Test the plan for different inputs (trace):

0 Consider general cases and special cases

Problem example: Find first non-repeated character in a
sentence

Example of a special case for the previous problem:

Input sentence:
Algorithm output:

Second Step: Design the Algorithm

Test the plan for different inputs (trace):

0 Consider general cases and special cases

Problem example: Find first non-repeated character in a
sentence

Example of a special case for the previous problem:

Input sentence: blablabla
Algorithm output: none

Algorithm Design

Refinement:
o ldentify similarities and patterns
o Make the solution more general

o Consider algorithm efficiency
Is there an alternative?

Problem Solving Exercises

Problem: Try to guess a number in the
minimum amount of tries

o | can only tell you if you are right, too high or too
low

123456/789101112131415

Problem Solving Exercises

First solution:

o 1. Pick a number at random

o 2. Ifitis correct: you win and we stop
o 3. Ifitis incorrect: repeat the process

Problem Solving Exercises

A better (refined) solution:

o 1. Pick a number:

1.1 Add the minimun number to the maximum and divide the
result by two, round the result, and pick this number

o 2. Ifitis correct: you win and we stop

o 3. Ifitis a smaller number, repeat the process but only
with the numbers to the left of the one you picked

o 4. If it is a bigger number, repeat the process but only
with the numbers to the right of the one you picked

Problem Solving Exercises

Design an algorithm for obtaining the average
value given a list of numbers

Design an algorithm for an ATM: the user will
Introduce the amount required and the

machine will only dispense notes of 50, 20
and 10 euros

Algorithm Design

Exercise: “Find the average value given a list
of numbers”

Algorithm Design

“Count the numbers”

o Set counterto O

o Read first number and increase the counter

o Read second number and increase the counter

o Continue reading and increasing the counter until
the end of the list

Algorithm Design

“Add up the numbers”

o Setsum resultto O

o Read first number and add it to sum result

o Read second number and add it to sum result

o Continue reading and adding until the end of the
list

Algorithm Design

“Divide the result by numbers counted”
o If counter is O then resultis O

o If counter i1s not O then result I1s the sum of the
numbers divided by the counter

Algorithm Design

Solution:
o Set counter and sum resultto O
o Try to read a number

o If a number has been read add it to the sum result
and increase the counter

o Repeat the two previous steps until no more
numbers can be read

o If counter is 0 then the resultis O

o If counter is not O then result Is the sum of the
numbers divided by the counter

Problem Solving Exercises

Design an algorithm for an ATM: the user will
Introduce the amount required and the
machine will only dispense notes of 50, 20
and 10 euros

o The ATM only allows quantities in multiples of 10
o The ATM only allows quantities greater than 10

Algorithm Design

Read number
introduced by the user

Return ATM money

Compute the number of
notes of 50, 20 and 10

Give the user the
corresponding notes of
50, 20 and 10

Compute the
number of
notes of 50

Compute the
number of
notes of 20

Compute the
number of
notes of 10

Give Give Give
notes || notes || notes
of 50 of 20 of 10

Algorithm Design

“Compute the number of notes of 50™

o If quantity is greater or equal to 50
notesOf50 = quantity / 50
guantityFor20 = remainder of quantity / 50

o If quantity is less than 50
notesOf50 =0
guantityFor20 = guantity

Algorithm Design

“Compute the numbers of notes of 20"

o If quantityFor20 is greater or equal to 20
notesOf20 = quantityFor20 / 20
guantityForl0 = reminder of quantityFor20 / 20

o If quantityFor20 is less than 20
notesOf20 =0
guantityFor10 = gquantity

Algorithm Design

“Compute the numbers of notes of 10”

o If quantityForl0 is greater or equal to 10
notesOf10 = quantityFor10/ 10

Algorithm Design

o Read the quantity
o hotesOf50 = 0, notesOf20=0, notesOf10=0

o If quantity is greater or equal to 50
notesOf50 = quantity / 50
quantityLeft = remainder of quantity / 50
o If quantity is less than 50
notesOf50 =0
quantityLeft = quantity
o If quantityLeft is greater or equal to 20
notesOf20 = quantityLeft / 20
quantityLeft = remainder of quantityLeft / 20
o If quantityLeft is less than 20
notesOf20 =0
quantityLeft = quantityLeft
o If quantityLeft is greater or equal to 10
notesOf10 = quantityLeft / 10

o Give the user notesOf50 notes of 50
o Give the user notesOf20 notes of 20
o Give the user notesOf10 notes of 10

 Problem Solving Exercises

= Game:
o https://www.brainpop.com/games/blocklymaze/

https://www.brainpop.com/games/blocklymaze/

