
1

Unit 5:
Subprograms

Objectives

n Understand the need of organizing the code
in scripts and functions

n Learn to write functions and scripts in
MATLAB

n Understand how parameters are passed to a
function

n Know the different types of variables

.
2

Programme modules

n Programs may be too long and complex to
write as a single unit.

n A program can be logically divided in smaller
subprograms or modules

n Advantages:
q Divide and Rule
q Easier to maintain and to debug
q Easier to reuse

3

Modular Programming in MATLAB

n There are two kinds of M-files (*.m):
q Scripts:

n They operate on data in the main workspace.
n Do not accept input arguments or return output

arguments.
q Functions:

n Internal variables are local to the function
n They can accept input arguments and return output

arguments.

.
4

Scripts or m-files

n Contain sequences of MATLAB commands
n Whenever a command produces an output

the result is visualized in the Command
Window

n They can be executed from...

.
5

Scripts or m-files

n Contain sequences of MATLAB commands
n They can be executed from...

q Command window: typing the name of the script
q MATLAB editor: using the ‘run’ icon
q Other script: including the name of the script in the

sequence of commands (calls)

.
6

Scripts or m-files: calls

.
7

name_of_script2

Script2Script1

Scripts or m-files: calls

.
8

name_of_script2

Script2Script1

n An script can also call itself (recursion)

2

4

1

3

5

Scripts or m-files: variables

n Scripts can operate on existing variables of
the workspace, or they can create new
variables on which to operate.

n When a script is executed from the command
window or called from another script the
variables created belong to the MATLAB
workspace

.
9

Scripts or m-files. Example of CALL
% Script example 2
if (driver == ‘f’) &(years < 30)

dto = 10;
else

dto = 5;
end;

.
10

% Script example 1
driver = ‘f’;
years = 27;
scriptExample2;
fprintf(‘the dto is %d’, dto);

MATLAB WORKSPACE

Scripts or m-files. Example of CALL
% Script example 2
if (driver == ‘f’) &(years < 30)

dto = 10;
else

dto = 5;
end;

.
11

% Script example 1
driver = ‘f’;
years = 27;
scriptExample2;
fprintf(‘the dto is %d’, dto);

driver years
f 27

MATLAB WORKSPACE

Variable name
Variable value

Scripts or m-files. Example of CALL
% Script example 2
if (driver == ‘f’) &(years < 30)

dto = 10;
else

dto = 5;
end;

.
12

% Script example 1
driver = ‘f’;
years = 27;
scriptExample2;
fprintf(‘the dto is %d’, dto);

driver years
f 27

MATLAB WORKSPACE

Variable name
Variable value

Scripts or m-files. Example of CALL
% Script example 2
if (driver == ‘f’) &(years < 30)

dto = 10;
else

dto = 5;
end;

.
13

% Script example 1
driver = ‘f’;
years = 27;
scriptExample2;
fprintf(‘the dto is %d’, dto);

driver years dto
f 27 10

MATLAB WORKSPACE

Variable name
Variable value

Scripts or m-files. Example of CALL
% Script example 2
if (driver == ‘f’) &(years < 30)

dto = 10;
else

dto = 5;
end;

.
14

% Script example 1
driver = ‘f’;
years = 27;
scriptExample2;
fprintf(‘the dto is %d’, dto);

driver years dto
f 27 10

MATLAB WORKSPACE

Variable name
Variable value

Scripts or m-files. Example of CALL
% Script example 2
if (driver == ‘f’) &(years < 30)

dto = 10;
else

dto = 5;
end;

.
15

% Script example 1
driver = ‘f’;
years = 27;
scriptExample2;
fprintf(‘the dto is %d’, dto);

driver years dto
f 27 10

MATLAB WORKSPACE

Variable name
Variable value

Scripts or m-files: variables

n Useful commands:
q echo on/off: when activated (echo on) prints the

commands in the script as they are executed.
n This can be very useful when debugging (finding errors)

in our programs
q help scriptname: shows the first two lines of

comments of the script. Useful for documenting.
q clear: cleans the workspace, removing all the existing

variables.
n It is a good practice to put the word clear at the beginning of a script to make sure

variables from previous executions of other programs do not interfere.

.
16

Functions

n MATLAB allows users to create their own functions,
which will work in a similar way to the MATLAB
functions rem, floor, sqrt..

n User functions are defined in m-files in a similar way to
the scripts but following a specific syntax

n User functions can be called from the command
window, from scripts or from other functions

n Each call must supply values for the input arguments of the
function and retrieve the values of the output arguments

n Every function has its own function workspace

.
17

Functions. Example

function [salary]= obtainSalary(wage,hoursWorked)
% Function to compute the salary of a worker
% Extra hours are paid a 50% more
% wage = wage of the worker in euros
% hoursWorked = hours worker per week
% extra = extra salary of the worker per week
% salary = salary of the worker per week

base = wage * hoursWorked;
if (hoursWorked > 40)

extra = (hoursWorked-40) * wage /2;
else

extra = 0;
end
salary = base + extra;
end

.
18

The code is stored
in a file named

obtainSalary.m

Function definition

function [salary]= obtainSalary(wage,hoursWorked)
% Function to compute the salary of a worker
% Extra hours are paid a 50% more
% wage = wage of the worker in euros
% hoursWorked = hours worker per week
% extra = extra salary of the worker per week
% salary = salary of the worker per week

base = wage * hoursWorked;
if (hoursWorked > 40)

extra = (hoursWorked-40) * wage /2;
else

extra = 0;
end
salary = base + extra;
end

.
19

Body of
the function

Function
definition

Help text

H1 line

Function definition

function [salary]= obtainSalary(wage,hoursWorked)
% Function to compute the salary of a worker
% Extra hours are paid a 50% more
% wage = wage of the worker in euros
% hoursWorked = hours worker per week
% extra = extra salary of the worker per week
% salary = salary of the worker per week

base = wage * hoursWorked;
if (hoursWorked > 40)

extra = (hoursWorked-40) * wage /2;
else

extra = 0;
end
salary = base + extra;
end

.
20

Body of
the function

Function
definition

Help text

H1 line

Function definition

n Function definition
q First line of the code
q Indicates that the file contains a function
q Defines the function name
q Defines the number and order of the input and output parameters

function [output arguments]= function_name (input paramaters)

.
21

List of output
arguments separated
by comas. A function
may have from 0, 1
or more than 1
output parameters

Name of the function.
Can be composed of
characters, digits and
the underscore
symbol. Use the same
function_name as the
m file that contains
the code

List of input parameters
separated by commas. A
function may have from
0, 1 or more than 1
input parameters

Function keyword.
Always in lowercase

Function definition

function [salary]= obtainSalary(wage,hoursWorked)
% Function to compute the salary of a worker
% Extra hours are paid a 50% more
% wage = wage of the worker in euros
% hoursWorked = hours worker per week
% extra = extra salary of the worker per week
% salary = salary of the worker per week

base = wage * hoursWorked;
if (hoursWorked > 40)

extra = (hoursWorked-40) * wage /2;
else

extra = 0;
end
salary = base + extra;
end

.
22

Body of
the function

Function
definition

Help text

H1 line

Function definition

n The H1 line and help lines are comments which makes it
easy to document your functions

n H1 line:
q First comment line of the function
q Normally contains the name of the function and a brief description
q When a user types lookfor word in the command window

MATLAB retrieves all the H1 lines which contains that word
n Help lines:

q Comment lines between the H1 line and the first line of code
q The command help function_name retrieves the help lines

of that function

.
23

Function definition

function [salary]= obtainSalary(wage,hoursWorked)
% Function to compute the salary of a worker
% Extra hours are paid a 50% more
% wage = wage of the worker in euros
% hoursWorked = hours worker per week
% extra = extra salary of the worker per week
% salary = salary of the worker per week

base = wage * hoursWorked;
if (hoursWorked > 40)

extra = (hoursWorked-40) * wage /2;
else

extra = 0;
end
salary = base + extra;
end

.
24

Body of
the function

Function
definition

Help text

H1 line

The word end marks the end of the body of the function.
Do not put a ; at the end of this line or you will get an error

Functions. Example of call

yourWage = input(‘Introduce your wage’);
yourHours = input(‘Introduce the hours worked’);
yourSalary = obtainSalary(yourWage, yourHours);
fprintf(‘Your salary is %d’, yourSalary);

.
25

function [salary]= obtainSalary(wage,hoursWorked)

% Function to compute the salary of a worker

% Extra hours are paid a 50% more

% wage = wage of the worker in euros

% hoursWorked = hours worker per week

% extra = extra salary of the worker per week

% salary = salary of the worker per week

base = wage * hoursWorked;
if (hoursWorked > 40)

extra = (hoursWorked-40) * wage /2;
else

extra = 0;
end
salary = base + extra;
end

ob
ta

in
Sa

la
ry

.m

ex
er

ci
se

1.
m

Functions. Example of call
yourWage = input(‘Introduce your wage’);
yourHours = input(‘Introduce the hours worked’);
yourSalary = obtainSalary(yourWage, yourHours);
fprintf(‘Your salary is %d’, yourSalary);

.
26

function [salary]= obtainSalary(wage,hoursWorked)

% Function to compute the salary of a worker

% Extra hours are paid a 50% more

% wage = wage of the worker in euros

% hoursWorked = hours worker per week

% extra = extra salary of the worker per week

% salary = salary of the worker per week

base = wage * hoursWorked;
if (hoursWorked > 40)

extra = (hoursWorked-40) * wage /2;
else

extra = 0;
end;
salary = base + extra;
end

The values of the variables
yourWage and yourHourse
are copied to the function’s
variables (arguments)
wage and hoursWorked

Functions. Example of call
yourWage = input(‘Introduce your wage’);
yourHours = input(‘Introduce the hours worked’);
yourSalary = obtainSalary(yourWage, yourHours);
fprintf(‘Your salary is %d’, yourSalary);

.
27

function [salary]= obtainSalary(wage,hoursWorked)

% Function to compute the salary of a worker

% Extra hours are paid a 50% more

% wage = wage of the worker in euros

% hoursWorked = hours worker per week

% extra = extra salary of the worker per week

% salary = salary of the worker per week

base = wage * hoursWorked;
if (hoursWorked > 40)

extra = (hoursWorked-40) * wage /2;
else

extra = 0;
end;
salary = base + extra;
end

When Matlab finishes
executing the function the
value of the variable
salary is copied to the
variable yourSalary.
(Matlab does this because the
name of variable salary appears in
the list of output variables in the
function definition line)

Functions. Example with 2 output
values
function [salary, extra]= obtainSalary(wage,hoursWorked)
% Function to compute the salary of a worker
% Extra hours are paid a 50% more
% wage = wage of the worker in euros
% hoursWorked = hours worker per week
% extra = extra salary of the worker per week
% salary = salary of the worker per week

base = wage * hoursWorked;
if (hoursWorked > 40)

extra = (hoursWorked-40) * wage /2;
else

extra = 0;
end;
salary = base + extra;
end

.
28

Functions. Example with 2 output
values. Call
yourWage = input(‘Introduce your wage’);
yourHours = input(‘Introduce the hours worked’);
[yourSalary, yourExtra] = obtainSalary(yourWage, yourHours);
fprintf(‘Your salary is %d’, yourSalary);
fprintf(‘Your extra is %d’, yourExtra);

.
29

Functions. Example with 2 output
values. Call

yourWage = input(‘Introduce your wage’);
yourHours = input(‘Introduce the hours worked’);
[yourSalary, yourExtra] = obtainSalary(yourWage, yourHours);
fprintf(‘Your salary is %d’, yourSalary);
fprintf(‘Your extra is %d’, yourExtra);

.
30

function [salary, extra]= obtainSalary(wage,hoursWorked)

% Function to compute the salary of a worker

% Extra hours are paid a 50% more

% wage = wage of the worker in euros

% hoursWorked = hours worker per week

% extra = extra salary of the worker per week

% salary = salary of the worker per week

base = wage * hoursWorked;
if (hoursWorked > 40)

extra = (hoursWorked-40) * wage /2;
else

extra = 0;
end;
salary = base + extra;
end

n There are two different ways in which a programming
language may implement the calls of functions:
q Pass by values: The values of the variables of the

calling code are copied into the variables specified as
parameters of the functions.
n Changes in these variables do not modify the values of

the variables of the calling code.
q Pass by reference: Changes in the variables of the

function modify the values of the variables passed as
parameters in the calling code.

In MATLAB calls to all functions use pass by values
.

31

Passing parameters to a function

Local Variables
n Local variables:

.
32

Local Variables
n Local variables:

q Every function has its own function workspace
separated from the workspace used by the
command window and the scripts, and the
workspaces of the rest of the functions.

.
33

Local Variables
n Local variables:

q Every function has its own function workspace
separated from the workspace used by the
command window and the scripts, and the
workspaces of the rest of the functions.

q Variables defined in the body of a function
(including input and output arguments) are only
recognized inside the function scope.

.
34

Local Variables
n Local variables:

q Every function has its own function workspace
separated from the workspace used by the
command window and the scripts, and the
workspaces of the rest of the functions.

q Variables defined in the body of a function
(including input and output arguments) are only
recognized inside the function scope.

q Once the execution of the function finished its
workspace is eliminated and the current value
of the variables is lost. If the function is called
again a totally new workspace will be created

.
35

Local Variables

yourWage = input(‘Introduce your wage’);
yourHours = input(‘Introduce the hours worked’);
yourSalary = obtainSalary(yourWage, yourHours);
fprintf(‘Your salary is %d’, yourSalary);

.
36

function [salary]= obtainSalary(wage,hoursWorked)

% Function to compute the salary of a worker

% Extra hours are paid a 50% more

% wage = wage of the worker in euros

% hoursWorked = hours worker per week

% extra = extra salary of the worker per week

% salary = salary of the worker per week

base = wage * hoursWorked;
if (hoursWorked > 40)

extra = (hoursWorked-40) * wage /2;
else

extra = 0;
end;
salary = base + extra;
end

salary, wage, hoursworked,
base and extra are LOCAL
VARIABLES. They belong
to the function workspace

yourwage, yourHours, and
yourSalary are NOT
LOCAL. They belong to
the Matlab workspace

Local Variables

yourWage = input(‘Introduce your wage’);
yourHours = input(‘Introduce the hours worked’);
yourSalary = obtainSalary(yourWage, yourHours);
fprintf(‘Your salary is %d’, yourSalary);

.
37

function [salary]= obtainSalary(wage,hoursWorked)

% Function to compute the salary of a worker

% Extra hours are paid a 50% more

% wage = wage of the worker in euros

% hoursWorked = hours worker per week

% extra = extra salary of the worker per week

% salary = salary of the worker per week

base = wage * hoursWorked;
if (hoursWorked > 40)

extra = (hoursWorked-40) * wage /2;
else

extra = 0;
end;
salary = base + extra;
end

STEP 1. The user introduces
his/her wage and hours

500

20

yourWage yourHours

500 20

MATLAB WORKSPACE

Local Variables

yourWage = input(‘Introduce your wage’);
yourHours = input(‘Introduce the hours worked’);
yourSalary = obtainSalary(yourWage, yourHours);
fprintf(‘Your salary is %d’, yourSalary);

.
38

function [salary]= obtainSalary(wage,hoursWorked)

% Function to compute the salary of a worker

% Extra hours are paid a 50% more

% wage = wage of the worker in euros

% hoursWorked = hours worker per week

% extra = extra salary of the worker per week

% salary = salary of the worker per week

base = wage * hoursWorked;
if (hoursWorked > 40)

extra = (hoursWorked-40) * wage /2;
else

extra = 0;
end;
salary = base + extra;
end

STEP 2. The function obtain salary is called

yourWage yourHours

500 20

MATLAB WORKSPACE

wage hoursWorked

500 20

FUNCTION WORKSPACE

Local Variables

yourWage = input(‘Introduce your wage’);
yourHours = input(‘Introduce the hours worked’);
yourSalary = obtainSalary(yourWage, yourHours);
fprintf(‘Your salary is %d’, yourSalary);

.
39

wage hoursWorked base salary extra

500 20 1000 1000 0

FUNCTION WORKSPACE

function [salary]= obtainSalary(wage,hoursWorked)

% Function to compute the salary of a worker

% Extra hours are paid a 50% more

% wage = wage of the worker in euros

% hoursWorked = hours worker per week

% extra = extra salary of the worker per week

% salary = salary of the worker per week

base = wage * hoursWorked;
if (hoursWorked > 40)

extra = (hoursWorked-40) * wage /2;
else

extra = 0;
end;
salary = base + extra;
end

STEP 3. The function obtain salary is executed

yourWage yourHours

500 20

MATLAB WORKSPACE

wage hoursWorked base salary extra

500 20 1000 1000 0

Local Variables

yourWage = input(‘Introduce your wage’);
yourHours = input(‘Introduce the hours worked’);
yourSalary = obtainSalary(yourWage, yourHours);
fprintf(‘Your salary is %d’, yourSalary);

.
40

FUNCTION WORKSPACE

function [salary]= obtainSalary(wage,hoursWorked)

% Function to compute the salary of a worker

% Extra hours are paid a 50% more

% wage = wage of the worker in euros

% hoursWorked = hours worker per week

% extra = extra salary of the worker per week

% salary = salary of the worker per week

base = wage * hoursWorked;
if (hoursWorked > 40)

extra = (hoursWorked-40) * wage /2;
else

extra = 0;
end;
salary = base + extra;
end

STEP 4. The execution of the function finished
and Matlab continue on and prints the salary on
screen

yourWage yourHours yourSalary

500 20 1000

MATLAB WORKSPACE

DELETED

function [salary]= obtainSalary(wage,hoursWorked)

% Function to compute the salary of a worker

% Extra hours are paid a 50% more

% wage = wage of the worker in euros

% hoursWorked = hours worker per week

% extra = extra salary of the worker per week

% salary = salary of the worker per week

base = wage * hoursWorked;
if (hoursWorked > 40)

extra = (hoursWorked-40) * wage /2;
else

extra = 0;
end;
salary = base + extra;
end

Local Variables

yourWage = input(‘Introduce your wage’);
yourHours = input(‘Introduce the hours worked’);
yourSalary = obtainSalary(yourWage, yourHours);
fprintf(‘Your salary is %d’, yourSalary);
fprintf(‘Value of salary %d’, salary);

.
41

500

20

If we add this last line…
what MATLAB will print
on screen?

function [salary]= obtainSalary(wage,hoursWorked)

% Function to compute the salary of a worker

% Extra hours are paid a 50% more

% wage = wage of the worker in euros

% hoursWorked = hours worker per week

% extra = extra salary of the worker per week

% salary = salary of the worker per week

base = wage * hoursWorked;
if (hoursWorked > 40)

extra = (hoursWorked-40) * wage /2;
else

extra = 0;
end;
salary = base + extra;
end

Local Variables

yourWage = input(‘Introduce your wage’);
yourHours = input(‘Introduce the hours worked’);
yourSalary = obtainSalary(yourWage, yourHours);
fprintf(‘Your salary is %d’, yourSalary);
fprintf(‘Value of salary %d’, salary);

.
42

500

20

yourWage yourHours yourSalary

500 20 1000

MATLAB WORKSPACE

Matlab will give an error as the
variable ‘salary’ does not exists in
its workspace

function [salary]= obtainSalary(wage,hoursWorked)

% Function to compute the salary of a worker

% Extra hours are paid a 50% more

% wage = wage of the worker in euros

% hoursWorked = hours worker per week

% extra = extra salary of the worker per week

% salary = salary of the worker per week

base = wage * hoursWorked;
if (hoursWorked > 40)

extra = (hoursWorked-40) * wage /2;
else

extra = 0;
end;
salary = base + extra;
end

Local Variables
salary = 0;
yourWage = input(‘Introduce your wage’);
yourHours = input(‘Introduce the hours worked’);
yourSalary = obtainSalary(yourWage, yourHours);
fprintf(‘Your salary is %d’, yourSalary);
fprintf(‘Value of salary %d’, salary);

.
43

500

20

And if we add the first
and last line… what
MATLAB will print on
screen?

function [salary]= obtainSalary(wage,hoursWorked)

% Function to compute the salary of a worker

% Extra hours are paid a 50% more

% wage = wage of the worker in euros

% hoursWorked = hours worker per week

% extra = extra salary of the worker per week

% salary = salary of the worker per week

base = wage * hoursWorked;
if (hoursWorked > 40)

extra = (hoursWorked-40) * wage /2;
else

extra = 0;
end;
salary = base + extra;
end

Local Variables

.
44

500

20

salary yourWage yourHours yourSalary

0 500 20 1000

MATLAB WORKSPACE

The salary variable of
the script is not the
same as the salary
variable defined in the
function body

Matlab will print:
Value of salary 0

salary = 0;
yourWage = input(‘Introduce your wage’);
yourHours = input(‘Introduce the hours worked’);
yourSalary = obtainSalary(yourWage, yourHours);
fprintf(‘Your salary is %d’, yourSalary);
fprintf(‘Value of salary %d’, salary);

Exercise

n Write a function called ‘hypothenuse’ that
receives as parameters the lengths of two
sides of a triangle and returns the value of
the hypotenuse.
q To compute the square root you can use the

function sqrt

.
45

Exercise

n Write a function called ‘hypothenuse’ that
receives as parameters the lengths of two
sides of a triangle and returns the value of
the hypotenuse.
function [hyp] = hypothenuse(sideA, sideB)
% function hypothenuse
% Given the two sides of a triangle computes its
% hypothenuse
hyp = sqrt(sideA^2+sideB^2);
end

.
46

Exercise

n Write a program that asks the user to
introduce the length of two sides of the
triangle, calls the hypothenuse function and
prints the result on screen

.
47

Exercise

n Write a program that asks the user to
introduce the length of two sides of the
triangle, calls the hypothenuse function and
prints the result on screen

.
48

varSideA = input (‘Introduce the lenght of one side’);
varSideB = input (‘Introduce the lenght of the other side’);
varHypo = hypothenuse (varSideA, varSideB);
fprintf(‘\n The hypthenuse is %d’, varHypo);

Exercise

n Write a function ‘obtainSeconds’ that receives
as parameters three numbers representing
hours, minutes and seconds and returns the
total number of seconds.

.
49

Exercise

n Write a function ‘obtainSeconds’ that receives
as parameters three numbers representing
hours, minutes and seconds and returns the
total number of seconds.

function [totalseconds] = obtainSeconds(hours, minutes, seconds)
% function obtainSeconds
% Receives a number of hours, minutes and seconds and return
% the total number of seconds
totalseconds = hours*3600+minutes*60+seconds;

end

.
50

Exercise

n Write a function ‘obtainTime’ that receives a
number representing a total of seconds and
returns the corresponding hours, minutes and
seconds.

n Test the function writing a program that asks the
user to introduce a number of seconds and
prints on screen the corresponding hours,
minutes and seconds.

.
51

Exercise

vtotalSeconds = input(‘Introduce seconds);
[varHours, varMinutes, varSeconds] = obtainTime(vtotalSeconds);
fprintf(‘Hours: %d \t Minutes: %d \t Seconds %d’, varHours,

varMinutes, varSeconds);

function [hours, minutes, seconds] = obtainTime(totalSeconds)

hours = floor(totalSeconds / 3600);
restSeconds = rem(totalSeconds,3600);
minutes = floor(restSeconds/ 60);
seconds = rem(restSeconds, 60);

end

.
52

PROGRAM

Function

Exercise

n Write a function ‘perfect’ that receives a number and
returns 1 (true) if the number is perfect and 0 if it is not.
A number is perfect when the sum of its factors
(excluding the number) is equal to its value.
q Examples:

n 6 is perfect as its factors are 1, 2 and 3 and 1+2+3 = 6
n 28 is perfect as 1+2+4+7+14 = 28

q Write a program that makes use of the function for
printing on screen all the perfect numbers between 1
and 1000.

.
53

Exercise (function)

function [rdo] = perfect(varNumber)
sumFactors = 0;
maxFactor = floor(varNumber/2);
for i=1:maxFactor

if rem(varNumber,i) == 0
sumFactors = sumFactors + i;

end;
end;
if (varNumber == sumFactors)

rdo = 1;
else

rdo = 0;
end;

end
.

54

Exercise (Program)

for i=1:1000
if perfect(i) == 1

fprintf('\n%d',i);
end;

end;

.
55

Exercise (Program)

for i=1:1000
if perfect(i)

fprintf('\n%d',i);
end;

end;

.
56

This also works. Remember that perfect(i)
is going to return 1 (true) or 0 (false)

Remember

n Write each function in a separate file. Only
one function per file

n The function and the file should have the
same name

n Do not put a ; after the keyword end at the
end of the function

n The variables in the function are local. You
can’t access them from the other functions or
script

.
57

