
Unit 1. Basic Notions

1.1 Computer Science and Engineering
1.2 Basic Concepts
1.3 Information representation
1.4 Programming Languages
1.5 Compilers

Objectives

n Understand which the basic components of a
computer are,

n Understand how the data is stored,
n Understand what a programming language is

2

Computer Science and Engineering

Definitions:
n Computer science, or computing science, is:

q the study of the theoretical foundations of
information and computation, and

q their implementation and application in computer
systems.

3

http://en.wikipedia.org/wiki/Information
http://en.wikipedia.org/wiki/Computation
http://en.wikipedia.org/wiki/Computer_system

Basic concepts: Computer Architecture

Input

Process
Output

Hardware

Operating Systems

Storage

Application Software
User

4

Basic Concepts: Computing

Arithmetic
Logic Unit

Control Unit

Main
Memory

Data and commands
Secondary/Mass storage

Input

Data and Commands
Input devices

Output

Storage

Data
Output devices

Central Processing Unit (CPU)

5

Basic Concepts: Computing

Arithmetic
Logic Unit

Control Unit

Main
Memory

Data and commands
Secondary/Mass storage

Input

Data and Commands
Input devices

Output

Storage

Data
Output devices

Central Processing Unit (CPU)

6

We need to put
the information

we want to
transform here

Basic Concepts: Computing

Arithmetic
Logic Unit

Control Unit

Main
Memory

Data and commands
Secondary/Mass storage

Input

Data and Commands
Input devices

Output

Storage

Data
Output devices

Central Processing Unit (CPU)

7

We need to put
the information

we want to
transform here

We need to tell the
CPU how to
transform the

information we put in
the memory

Basic Concepts: Information Representation

We need to put the
information we want to

transform in the computer
memory

8

hello

3145

?

Basic Concepts: Information Representation

01010
01010
00000
11111

9

hello

3145

?

Basic Concepts: Information Representation

Codification

01010
01010
00000
11111

10

hello

3145

?

Information Representation

n Information and data managed by a computer are:
q Elementary units: bit (Binary digIT)
q Two possible states
q Are represented by 0 and 1

n Bits can be used to represent characters, numbers,
commands, code, colors, …

n 8 bits = 1 byte (256 different values)
n Kilobyte (Kb): 1000 Bytes.
n Megabyte (Mb): 1000 Kb.
n Gigabyte (Gb): 1000 Mb

11

Basic Concepts: Information Representation

Codification

01010
01010
00000
11111

Numeric Data Integer, Real

Text ASCII, Unicode

Sound Wav, MIDI, Mp3

Images Bitmap, Vectorial

12

hello

3145

?

Information Representation

n Representing numbers:
q Decimal numeral system

q 10 digits
q Binary numeral system

q 2 digits
q Hexadecimal numeral system

q 16 digits

There are methods and
formulas to directly convert a
decimal number into a binary
one and viceversa

Hexadecimal

0 0000 0

1 0001 1
2 0010 2
3 0011 3
4 0100 4
5 0101 5

6 0110 6

7 0111 7
8 1000 8

9 1001 9

10 1010 A

11 1011 B
12 1100 C
13 1101 D
14 1110 E
15 1111 F

BinaryDecimal

13

Information Representation

n Representing numbers:
q Positive and negative

numbers
n Absolute value and sign

q 011 = 3 111 = -3
If the first digit is 0 it stands for +,
if the first digit is 1 it stands for -

q Real
n Floating

q -324.8125(10 = 101000100.1101(2

Hexadecimal

0 0000 0

1 0001 1
2 0010 2
3 0011 3
4 0100 4
5 0101 5

6 0110 6

7 0111 7
8 1000 8

9 1001 9

10 1010 A

11 1011 B
12 1100 C
13 1101 D
14 1110 E
15 1111 Fsign exponent mantissa

BinaryDecimal

14

Information Representation
n Representing characters

q Each character included in the
keyboard is represented by
binary numbers
n ASCII

q extended
q Fixed coding (1 character = 1

byte)
n Unicode

q Unique template for 65.000
characters

q Language independent
q Variable coding (1 or 2 bytes)
q Used on the web very often

ASCII

Character Decimal Binary

A 65 0100 0001

B 66 0100 0010

. . .

Z 90 0101 1010

a 97 0110 0001

z 122 0111 1010

Note that the relation between the character and
the number used to codify is totally arbitrary

15

Programming Languages

n What is Programming?
q A list of commands (sequence):

n Executable by the CPU
n Perform a certain task

q Phases:
1. Problem solving => creating an algorithm
2. Adapting the algorithm to the computer => codify the

algorithm by using a language understandable by the
computer

We need to tell the CPU how to
transform the information we put

in the memory

16

Programming Languages
n Algorithm Example:

Problem:
Compute the lenght of a vector.

Input data:
(x1, y1), (x2, y2)

Algorithm:
q Read x1, y1, x2, y2
q Compute Px = x2 – x1
q Compute Py = y2 – y1
q Compute Px2 = Px · Px
q Compute Py2 = Py · Py
q Compute R = sqrt2 (Px2 + Py2)
q Print R

Output data:
R

Program :
Algorithm steps detailed using Matlab.

Py

Px

(x1,y1)

(x2,y2)

x1 x2

y1

y2

17

Programming Languages

n Language:
q a set of symbols (characters, number, …) and rules allowing communication

n Programming Language:
q a set of symbols (characters, number, …) and rules allowing communication

between the developer and the computer.
q Includes alphabet, syntax and semantics.

n Algorithm:
q an algorithm is a finite list of well-defined instructions for accomplishing some

task that, given an initial state, will proceed through a well-defined series of
successive states, possibly eventually terminating in an end-state; it is not
codified in a specific programming language

n Program:
q is a collection of instructions that describes a task, or set of tasks, to be

carried out by a computer in a specific programming language.
§ Program = data sets and algorithms

18

http://en.wikipedia.org/wiki/Termination
http://en.wikipedia.org/wiki/Computer

Programming Languages
n Levels:

q Low level or machine language:
n Binary language interpreted by CU
n Hardware Specific
n Commands include a operation code and operands

q Assembler:
n assembly instruction mnemonics into operation codes:

Machine Language 01000 001
Assembler INC CX

q High level.
n Commands are written in a language closer to the humans (read, get, while, integer, …).
n Architecture independent.
n High level of abstraction. Easy to develop.
n Reduced program size.
n Allow data-types (integers, real, characters, …)
n Need translation into machine code: compilation

Lenguaje
de máquina

19

Machine
Lang.

Assembler
High
Level

Compiled Languages

n They need special programs (compilers) which translate source
code (written in high-level language) and produce a separated file
containing machine code

q Compiler:
§ Translate a complete program (source code) into object

code (binary)
§ Object code is stored into memory and can be executed

directly
§ During the translation task errors can be detected

To execute the program you will need the executable code

Source code
(High-level)

Executable code

(machine lang.) Execution
Compiler

20

Interpreted languages
n The source code is also compiled to produce the machine code that the processor can

execute but the process to do that is different from compiled languages

n Source code is translated sequentially one statement at a time using a
command interpreter
q They do not produce a separate executable file when compiled by

the command interpreter
q To execute the program you will need the source code and the

command interpreter
q Interpreted languages are usually slower as programs need to be

compiled each time we want to execute them
q In other words: the source code is compiled each time you

execute the program

Source code
(High-level) Interpreter

Execution

21

Types of Programming Languages

n Classification based on the type of compilation:
q Compiled Programs: C, C++, Java, Basic
q Interpreted Programs: MATLAB, Javascript

n Classification based on the purpose of the language:
q General purpose (Basic, Pascal, C)
q Problem oriented (Fortran, Cobol, Lisp, SQL)

n Classification based on the programming paradigm:
q Imperative programming: Pascal, C, MATLAB
q Object Oriented Programming: Java, C++
q Functional programming: Lisp
q Logic programming: Prolog

22

Bibliography

n Handbook of theoretical computer science
(vol. B): formal models and semantics, EA
Emerson - 1991 - MIT Press, Cambridge, MA

23

