Chapter 2

Limits and continuity of functions
of one variable

2.1 Limits

To determine the behavior of a function f as x approaches a finite value ¢, we use the
concept of limit. We say that the limit of f is L, and write lim,_,. f(x) = L, if the values
of f approaches L when x gets closer to c.

Definicién 2.1.1. (Limit when x approach a finite value ¢). We say that lim,_,. f(z) = L
if for any small positive €, there is a positive § such that

[f(z) —L| <e
whenever 0 < |z —¢| < 4.
We can split the above definition in two parts, using one—sided limits.

Definicion 2.1.2.

1. We say that L is the limit of f as x approaches ¢ from the right, lim,_,.+ f(x) = L,
if for any small positive €, there is a positive § such that

|f(x) — L] <e
whenever 0 < . — ¢ < 4.

2. We say that L is the limit of f as x approaches ¢ from the left, lim,_,.- f(z) = L, if
for any small positive €, there is a positive § such that

[f(z) = L] <€
whenever 0 < ¢ —x < 4.
Teorema 2.1.3. lim,_,. f(z) = L if and only if
lim f(x)=L and lim f(z)= L.
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We can also wonder about the behavior of the function f when z approaches 4+oo or

—0Q.

Definicién 2.1.4. (Limits when x approaches +00)

1.

lim,, o f(x) = L if for any small positive €, there is a positive value of z, call it z1,
such that
[f(z) = L| <e

whenever z > 7.

. limg o f(z) = L if for any small positive €, there is a negative value of z, call it x4,

such that
|f(z) — L] <e

whenever z < 7.

If the absolute values of a function become arbitrarily large as = approaches either a
finite value ¢ or o0, then the function has no finite limit L but will approach —oc or +oo.
It is possible to give the formal definitions. For example, we will say that lim,_,. f(z) = 400
if for any large positive number M, there is a positive d such that

flx) > M

whenever 0 < |z — ¢| < §. Please, complete the remaining cases.

Nota 2.1.5. Note that it could be ¢ € D(f), so f(c) is well defined, but lim,_,. f(z) does
not exits or limy_,. f(x) # f(c). Consider for instance the function f that is equal to 1 for
x # 0, but f(0) = 0. Then clearly the limit of f at 0is 1 # f(0).

Ejemplo 2.1.6. Consider the following limits.

1.

2.

lim 22 — 22 + 7 = 31.
r—6

lirin x? — 22 + 7 = o0, because the leading term in the polynomial gets arbitrarily
T—>1T00

large.

lir_ir_l 23 — 22 = 00, because the leading term in the polynomial gets arbitrarily large
T—>+00
for large values of z, but lim z® — 22 = —co because the leading term in the poly-

T——00
nomial gets arbitrarily large in absolute value, and negative.

1
lim — =0, since for z arbitrarily large in absolute value, 1/x is arbitrarily small.
r—+oo

1
lim — does not exists. Actually, the one—sided limits are:
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lim — = 400
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The right limit is infinity because 1/x becomes arbitrarily large when x is small and
positive. The left limit is minus infinity because 1/x becomes arbitrarily large in
absolute value and negative, when x is small and negative.

6. liI_’I_l zsenx does not exist. As x approaches infinity, sen z oscillates between 1 and
T—r+00

—1. This means that x senx changes sign infinitely often when = approaches infinity,
whilst taking arbitrarily large absolute values. The graph is shown below.

100 : : : :
50 n n
0
-50 U
100 20 40 60 80 1Uoo
a:2, if x <0;
7. Consider the function f(x) = ¢ —a2?, if0<x<1; lim, o f(x) = f(0) = 0, but

x, ifx>1.
lim,_,1 f(x) does not exist since the one-sided limits are different.

lim f(z)= lim z =1,

z—1t z—1t
lim f(z) = lim —2? = —1.
rz—1— z—1—

T
8. lim u does not exist, because the one—sided limits are different.

z—0 T
. x . x
lim — = lim — =1,
z—0t X z—0t T
.= . - . )
lim — = lim — =-1 (when z is negative, |x| = —x).

In the following, lim f(x) refer to the limit as = approaches +00, —oo or a real number
¢, but we never mix different type of limits.

2.1.1 Properties of limits

f and g are given functions and we suppose that all the limits below exist; A € R denotes
an arbitrary scalar.

1. Product by a scalar: im Af(z) = Alim f(x).

2. Sum: lim(f(x) 4+ g(z)) = lim f(x) + lim g(x).



3. Product: lim f(z)g(z) = (lim f(x))(lim g(z)).

f(z) _ lim f(z)
g() ~ Tmg(z)’

4. Quotient: If lim g(z) # 0, then lim

Teorema 2.1.7 (Squeeze Theorem). Assume that the functions f, g and h are defined
around the point c, except, maybe, for the point c itself, and satisfy the inequalities

g9(z) < f(z) < h(z).
Let lim, . g(x) = limg—,c h(z) = L. Then

lim f(z) = L.
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Ejemplo 2.1.8. Show that lim x sen () =0.
z—0 x

SoLUTION: We use the theorem above with g(z) = —|z| and h(x) = |z|. Notice that for
every x # 0, —1 <sen (1/z) <1 thus, when x > 0

—z <axsen(l/x) <z,
and when z < 0
z <zxsen(l/zr) < —uz.

These inequalities mean that —|z| < zsen (1/x) < |z|. Since
lim —|z| = lim |z] = 0,
z—0 x—0
we can use the theorem above to conclude that lim,_ oz sen i = 0.

2.1.2 Techniques for evaluating lim%
g(x

1. Use the property of the quotient of limits, if possible.
2. If lim f(z) = 0 and lim g(z) = 0, try the following:

(a) Factor f(x) and g(z) and reduce % to lowest terms.

(b) If f(x) or g(x) involves a square root, then multiply both f(z) and g(x) by the
conjugate of the square root.

Ejemplo 2.1.9.

2_9 -3 3
lim & = limw: lim(z —3) = 0.
z—=3 T+ 3 z—3 z+3 z—3

o 1—W1+4+x o 1l—-V1i+t2x (1+V]1+2x . —x —1
lim ———— = lim = lim
1++vV14+2 z—0

z—0 xT x—0 T
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3. If f(x) # 0 and lim g(z) = 0, then either lim % does not exist or lim % = +00 or
—00.

4. If x approaches 400 or —oo, divide the numerator and denominator by the highest
power of z in any term of the denominator.

Ejemplo 2.1.10.

2.1.3 Exponential limits

Let the limit
lim | f (2)]9)

be an indetermination. This happens i; B
e lim, . f(z) =1 and lim,_,. g(x) = oo (1°).
e lim, . f(z) = 0 and lim,_,. g(x) = 0 (0°).
o lim, . f(x) = 00 and lim, . g(x) = 0 (c0?).
Noting that

- 9(%) — 1ipy 9@ I f(2) — Glimaose g(x) In f(2)
lim [ ()] lime € :

all cases are reduced to the indetermination 0 - oo, since we have to compute the limit
lim g(x) In f ().
In the first indetermination, 1°°, it often helps to use the identity
lim g(z) In f(z) = lim g(x)(f(z) - 1).
r—cC Tr—cC

since when z is close to 0, In(1 + z) ~ x, or, Inx ~ z — 1

Ejemplo 2.1.11. lim, oo (1+ 1)* = lim, 0 e”™(1435) = 25 — ¢,

x
Ejemplo 2.1.12. Let a,b > 0. Calculate lim,_, (;i‘;;) .

If a > b, then the basis function tends to a/b > 1, thus the limit is co. If a < b, then
the basis function tends to a/b < 1, thus the limit is 0. When a = b

1+ax\” ; 14 : -
lim (2 i = elme—oon(255 1) = plime—oo 5507 — o= 1/a,
T—00 ax

2.1.4 Remarkable limit
Recall that

lim 2 .
z—0 X
Ejemplo 2.1.13. Evaluate the following limits:
t 1 1
1. lim 42 _ iy 222 = 1im 2222 lim —1.1=1.
z—0 X z—0 X COSX z—0 X z—0 COS T



. sendx {z=3z} .. senz . senz
2. lim =~ lim
z—0 T z—0 3 z—=0 Zz

2.2 Asymptotes

An asymptote is a line that the graph of a function approaches more and more closely until
the distance between the curve and the line almost vanishes.

Definicién 2.2.1. Let f be a function

1. The line z = ¢ is a vertical asymptote of f if lim,_,.+ |f(x)| = oo or lim,_,.— |f(z)| =
0.

2. The line y = b is a horizontal asymptote of f if lim,_ 1o f(z) = b or lim,—,_ f(x) =
b.

3. The line y = ax + b is an oblique asymptote of f if

(a) lim ) =aand lim (f(z)—ax)=0,or

r—+o00 I T—r+00

(b) lim =) =aand lim (f(z)—ax)=0.

r——00 I T——00

Notice that a horizontal asymptote is a particular case of oblique asymptote with a = 0.

. . (14 x)*
Ejemplo 2.2.2. Determine the asymptotes of f(z) = ﬁ.
—x

SOLUTION: Since the denominator vanishes at © = 1, the domain of f is R — {1}. Let
us check that x = 1 is a vertical asymptote of f:
(1+x)?

lim ——% = 4+
z—1% (1 — 1})4

On the other hand . A
1 1 1
lim 7( +2) = lim 7( /z+1) =
z—too (1 —x)t  2o+o0 (1/z—1)%

hence y = 1 is a horizontal asymptote at +o0o. In the same way, y = 1 is a horizontal
asymptote at —oo. There is no other oblique asymptotes.

_3x3—2

Ejemplo 2.2.3. Determine the asymptotes of f(z) = -
x

1

SoLUTION: The domain of f is R—{0}. Let us check that = = 0 is a vertical asymptote

of f.
323 — 2 2
lim =% 5— = lim 3z — —) = lim 3z — lim — = —oc0.
r—0% x z—0% T z—0% z—0E X

Thus, z = 0 is a vertical asymptote of f. On the other hand

33 —2
lim :Uiz = lim (3z—
r—+oo x r—+oo

2



thus, there is no horizontal asymptote. Let us study now oblique asymptotes:

3 _
a= lim @: lim 3z 2: lim <3—2>:3,

r—Foo T e=Eoo g3 @—rEoo v’
‘ ) 3x3 — 2 . 2
b= tim () ~30) =t (P2 30) = i (-5) o

We conclude that y = 3z is an oblique asymptote both at +o0o0 and —ooc.

2.3 Continuity

The easiest limits to evaluate are those involving continuous functions. Intuitively, a func-
tion is continuous if one can draw its graph without lifting the pencil from the paper.

Definicién 2.3.1. A function f: R — R is continuous at ¢ if ¢ € D(f) and

lim f(z) = f(0).

Tr—rC
Hence, f is discontinuous at c if either f(c) is undefined or lim,_,. f(x) does not exist
or lim, . f(x) # f(c).
2.3.1 Properties of continuous functions

Suppose that the functions f and g are both continuous at c¢. Then the following functions
are also continuous at c.

1. Sum. f+g.
2. Product by a scalar. \f, A € R.

3. Product. fg.

W

. Quotient. f/g, whenever g(c) # 0.

2.3.2 Continuity of a composite function

Suppose that f is continuous at ¢ and g is continuous at f(c). Then, the composite function
go f is also continuous at c.

2.3.3 Continuity of elementary functions

A function is called elementary if it can be obtained by means of a finite number of arith-
metic operations and superpositions involving basic elementary functions. The functions
y = C' = constant, y = 2%, y = d*, y = lnx, y = €*, y = senx, y = cosz, y = tanxz,
y = arctan x are examples of elementary functions. Elementary functions are continuous in
their domain.

Ejemplo 2.3.2.



1. The function f(x) = v/4 — 22 is the composition of the functions y = 4 — 2% and
f(y) = y/?, which are elementary, thus f is continuous in its domain, that is, in

D =1[-2,42].
2. The function g(z) = —~1= is the composition of function f above and function

Va—z?
g(y) = 1/y, thus it is elementary and continuous in its domain, D(g) = (-2, +2).

2.3.4 Limit of a composite function

Let f, g be functions from R to R and ¢ € R. If g is continuous at L and lim,_,. f(x) = L,

then
lim g(f(z)) = g(lim f(z)) = g(L).

Tr—c xr—c
2
T r—2
Ejemplo 2.3.3. Show that lim arctan L T
rz—1 3.%'2 — 3z 4
SoLUTION: The function tan™! is continuous.
. 224 r—2 24 ax—2
lim arctan { ———— | = arctan | im —————
1 3z2 — 3z -1 322 — 3z

z—1  3z(x —1)

( (a2 —1)(z+2)
_ arctan (hm )
5

. + 2
— arctan | lim
r—1 X
= arctan
o
4

Ejemplo 2.3.4. Evaluate the following limits:

In (1
o lim 21 +2)

z—0 x z—0

= limIn (14 z)/* =1n (lim(l —l—az)1/$> =Ilne=1.

z—0

Notice that the function In (-) is continuous at e, thus we can apply 2.3.4.

Coat—1 . z . z
e lim =lim ———=Ina(lim ——— ) =Ina.
z—0 T z—0 ln§1+z) 2—0 In (1 + Z)
na

We have used z = a” — 1, so that = In (1 + 2)/Ina, and the value of the limit above.

2.3.5 Continuity theorems

Continuous functions have interesting properties. We shall say that a function is continuous
in the closed interval [a, b] if it is continuous at every point = € [a, b].

Teorema 2.3.5 (Bolzano’s Theorem). If f is continuous in [a,b] and f(a)- f(b) <0, then
there exists some c € (a,b) such that f(c) = 0.



Ejemplo 2.3.6. Show that the equation 23 + 2 — 1 = 0 admits a solution, and find it with
an error less than 0.1.

SoLuTioN: With f(x) = 23+ 2 — 1 the problem is to show that there exists ¢ such that
f(e) = 0. We want to apply Bolzano’s Theorem. First, f is continuous in R. Second, we
identify a suitable interval I = [a,b]. Notice that f(0) = —1 < 0 and f(1) = 1 > 0 thus,
there is a solution ¢ € (0, 1).

Now, to find an approximate value for ¢, we use a method of interval-halving as follows:
consider the interval [0.5,1]; f(0.5) =1/8+1/2 -1 < 0 and f(1) > 0, thus ¢ € (0.5,1).
Choose now the interval [0.5,0.75]; f(0.5) < 0 and f(0.75) = 27/64 + 3/4 — 1 > 0 thus,
¢ € (0.5,0.75). Let now the interval [0.625,0.75]; f(0.625) ~ —0.13 and f(0.74) > 0 thus,
¢ € (0.625,0.75). The solution is approximately ¢ = 0.6875 with a maximum error of 0.0625.

Teorema 2.3.7 (Weierstrass’ Theorem). If f is continuous in [a,b] , then there exist points
¢,d € [a,b] such that
fle) < f(x) < f(d)

for every x € [a, b].

The theorem asserts that a continuous function attains over a closed interval a minimum
(m = f(c)) and a maximum value (M = f(d)). The point c is called a global minimizer of
f on [a,b] and d is called a global mazimizer of f on [a,b].

Ejemplo 2.3.8. Show that the function f(z) = 22 + 1 attains over the closed interval
[—1,2] a minimum and a maximum value.
SoLUTION: The graph of f is shown below.

10

We can see that f is continuous in [—1, 2], actually f is continuous in R, and f attains
the minimum value at x = 0, f(0) = 1, and the maximum value at z = 2, f(2) = 5.

Ejemplo 2.3.9. The assumptions in the Theorem of Weierstrass are essential.
e The interval is not closed, or not bounded.

— Take I = (0,1] and f(x) = 1/x; f is continuous in I, but it does not have global
maximum.



— Take I = [0,00) and f(xz) =1/(1+4 x); f is continuous in I, but it does not have
global minimum, since lim,_, f(z) = 0, but f(z) > 0 is strictly positive for
every x € I.

z, f0<e<l;
0, ifx=1. S
has a global minimum at « = 0, but there is no global maximum since lim,_,; f(z) =1
but f(xz) < 1 for every z € I.

e The function is not continuous. Take I = [0,1] and f(x) = {

10



