
1

L10: Semaphores I

Este texto se distribuye bajo los términos de la Creative Commons License

César Sánchez

Grado en Ingenieŕıa Informática
Grado en Matemáticas e Informática

Universidad Politécnica de Madrid

Fri, 6-March-2015

Under
co

nstr
uct

ion! Do
not prin

t



2

Mapa Conceptual

Terminology:

atomic race condition
interleaving busy-wait
mutual exclusion critical section
deadlock livelock
liveness semaphores

Concurrency = Simultaneous + Nondeterminism + Interaction

Interaction = Communication | Synchronization

Synchronization = Mutual Exclusion | Conditional
Synchronization



3

HW4: Garantizar exclusión mutua con semaforos

Homework:
HW1: Creación de threads en Java
HW2: Provocar una condición de carrera
HW3: Garanatizar la exclusión mutua con espera activa
HW4: Garantizar la exlusión mutua con semáforos

Fecha de Cierre:
Miércoles 11-Marzo-2015 11am

Entrega online:
http://lml.ls.fi.upm.es/~entrega



3

HW4: Garantizar exclusión mutua con semaforos



4

Problems with Busy-Wait

Busy-wait algorithms (Peterson, Dekker, Bakery) are correct, but

hard to prove correctness
waste of CPU
atomic actions are too fine grain and depend on the architecture

problems



4

Problems with Busy-Wait

Busy-wait algorithms (Peterson, Dekker, Bakery) are correct, but

hard to prove correctness
waste of CPU
atomic actions are too fine grain and depend on the architecture

solution

problems



4

Problems with Busy-Wait

Busy-wait algorithms (Peterson, Dekker, Bakery) are correct, but

hard to prove correctness
waste of CPU
atomic actions are too fine grain and depend on the architecture

solution

semaphores

problems

stop threads (like join)
based on atomic test and set
higher level, easier to reason about

no busy-wait



5

Semaphores

stop threads (like join)
no busy-wait
based on atomic test and set
supported by most hardware
higher level, easier to reason about
assertion based reasoning feasable



5

Semaphores

stop threads (like join)
no busy-wait
based on atomic test and set
supported by most hardware
higher level, easier to reason about
assertion based reasoning feasable

Architecture independent
Present in many OSs and languages



5

Semaphores

stop threads (like join)
no busy-wait
based on atomic test and set
supported by most hardware
higher level, easier to reason about
assertion based reasoning feasable

Allow to solve easily mutual-exclusion by n processes

Architecture independent
Present in many OSs and languages

We will learn how to use them, and their limitations



6

What is a semaphore

Resembles (only remotely) traffic lights:
if allowed, you pass
if not allowed, you wait



6

What is a semaphore

Resembles (only remotely) traffic lights:
if allowed, you pass
if not allowed, you wait

A semaphore is a data-type with two operations:

P()

V()



6

What is a semaphore

Resembles (only remotely) traffic lights:
if allowed, you pass
if not allowed, you wait

A semaphore is a data-type with two operations:

P()

V()

Internally, a semaphore maintains a counter, which is initialize at
creation.

semaphore s(3);

...

s.P();

...

s.P();

s.count←3



7

Semantics of semaphores

Semantics of s.P():{
〈if s.count==0 then block〉
〈if s.count!=0 then s.count--〉



7

Semantics of semaphores

Semantics of s.P():{
〈if s.count==0 then block〉
〈if s.count!=0 then s.count--〉

s.P()
s.count==0

Example 1:



7

Semantics of semaphores

Semantics of s.P():{
〈if s.count==0 then block〉
〈if s.count!=0 then s.count--〉

s.P()
s.count==0

Example 1:



7

Semantics of semaphores

Semantics of s.P():{
〈if s.count==0 then block〉
〈if s.count!=0 then s.count--〉

Example 2:

s.P()
s.count==1



7

Semantics of semaphores

Semantics of s.P():{
〈if s.count==0 then block〉
〈if s.count!=0 then s.count--〉

Example 2:

s.P()
s.count==1

s.count==0



7

Semantics of semaphores

Semantics of s.P():{
〈if s.count==0 then block〉
〈if s.count!=0 then s.count--〉

Example 2:

s.P()
s.count==1

s.count==0
Atomically!



7

Semantics of semaphores

Semantics of s.V():{
〈if no blocked then s.count++〉
〈if some blocked then unblock one thread



7

Semantics of semaphores

Semantics of s.V():{
〈if no blocked then s.count++〉
〈if some blocked then unblock one thread

Example 3:

s.P()
s.count==0

s.V()



7

Semantics of semaphores

Semantics of s.V():{
〈if no blocked then s.count++〉
〈if some blocked then unblock one thread

Example 3:

s.P()
s.count==0

s.V()

s.count==0

s.count==0



8

Questions

1. Could a semaphore become negative?



8

Questions

1. Could a semaphore become negative?

2. Could a semaphore (initialized to ≥ 0) become negative?



8

Questions

1. Could a semaphore become negative?

2. Could a semaphore (initialized to ≥ 0) become negative?

3. Let s be a semaphore be initialized to ≥ 0. Is the following true?:

If a thread is blocked then s.count==0



8

Questions

1. Could a semaphore become negative?

2. Could a semaphore (initialized to ≥ 0) become negative?

3. Let s be a semaphore be initialized to ≥ 0. Is the following true?:

If a thread is blocked then s.count==0

4. Let s be a semaphore be initialized to ≥ 0. Is the following true?:

If s.count==0 then a thread is blocked



9

Semaphores in Java

In HW4 you must use
es.upm.babel.cclib.Semaphore



9

Semaphores in Java

In HW4 you must use
es.upm.babel.cclib.Semaphore

You must import with:
import es.upm.babel.cclib.Semaphore;



9

Semaphores in Java

In HW4 you must use
es.upm.babel.cclib.Semaphore

You must import with:
import es.upm.babel.cclib.Semaphore;

Create a semaphore:
Semaphore s(1);



9

Semaphores in Java

In HW4 you must use
es.upm.babel.cclib.Semaphore

You must import with:
import es.upm.babel.cclib.Semaphore;

Create a semaphore:
Semaphore s(1);

Acquire a semaphore:
s.await();



9

Semaphores in Java

In HW4 you must use
es.upm.babel.cclib.Semaphore

You must import with:
import es.upm.babel.cclib.Semaphore;

Create a semaphore:
Semaphore s(1);

Acquire a semaphore:
s.await();

Release a semaphore:
s.signal();



10

Operations Names

P()

V()

await()

signal() release()

acquire()

Original cclib java



10

Operations Names

P()

V()

await()

signal() release()

acquire()

decrement_or_block_if_the_result_is_negative()

wake_a_waiting_process_if_any_or_increment()

Original cclib java



11

Fairness

Q: Which blocked thread is awaken?



11

Fairness

Q: Which blocked thread is awaken?

A: non-deterministic



11

Fairness

Q: Which blocked thread is awaken?

A: non-deterministic

Q: Can a blocked thread always loose against others?



11

Fairness

Q: Which blocked thread is awaken?

A: non-deterministic

Q: Can a blocked thread always loose against others?

A: It depends



11

Fairness

Q: Which blocked thread is awaken?

A: non-deterministic

Q: Can a blocked thread always loose against others?

A: It depends

Fairness: a thread cannot be blocked forever
(if its semaphore is ready repteadely)



11

Fairness

Q: Which blocked thread is awaken?

A: non-deterministic

Q: Can a blocked thread always loose against others?

A: It depends

Fairness: a thread cannot be blocked forever
(if its semaphore is ready repteadely)

Typically, threads are awaken in the order they were blocked.

The Java implementation has a flag to force fairness (by default
it need not be)

cclib is fair


