

BLOQUE 1: FARMACOLOGÍA GENERAL

TEMA 5. INTERACCIONES FARMACOLÓGICAS.

CONCEPTO DE INTERACCIÓN MEDICAMENTOSA. CLASIFICACIÓN Y RELEVANCIA CLÍNICA.

INTERACCIONES FARMACOLÓGICAS

- 1. Definición de interacción farmacológica
- 2. Factores implicados en la aparición de interacciones
- 3. Tipos de interacciones: farmacodinámicas y farmacocinéticas
- 4. Consecuencias clínicas de una interacción

BIBLIOGRAFÍA:

• Farmacología en Enfermería. 2ª ed. Ed. Médica Panamericana. Madrid (2020)

Una <u>interacción farmacológica</u> es la modificación de la acción de un fármaco en magnitud o en duración debido a la administración previa o concomitante de otra sustancia (fármaco, alimento, productos de herbolario).

Las **consecuencias** pueden ser:

1. Beneficiosas:

Se potencian los efectos terapéuticos <u>sinergismo</u>

- Tratamiento de la HTA: IECAs + Diuréticos
- Tratamiento del VIH: Ritonavir + inhibidores de proteasas
- 2. <u>Perjudiciales</u>, en este caso se consideran como si fuesen reacciones adversas de tipo A. Pueden ser de dos tipos:
 - Se potencian los efectos tóxicos de uno de los fármacos administrados
 - Disminuyen los efectos terapéuticos antagonismo

SON CLÍNICAMENTE RELEVANTES:

- ✓ Cuando la **actividad y/o toxicidad** de un fármaco cambia en tal magnitud que se requiere ajuste de la dosis o intervención médica.
- ✓ Cuando el uso concomitante de dos fármacos que interactúan puede ocurrir cuando ambos son utilizados según las <u>recomendaciones terapéuticas</u>
- Las interacciones representan el 7% de todas las reacciones adversas en pacientes
 hospitalizados (menos del 1% se consideran clínicamente relevantes)
- Pueden representar el <u>1% del total de las hospitalizaciones</u>

FACTORES IMPLICADOS:

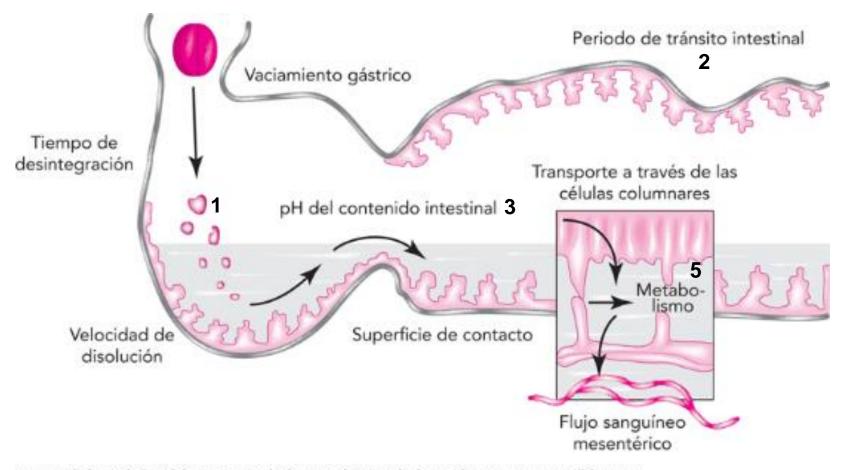
Dependientes del Fármaco	<u>Dependientes del paciente</u>
 Características fisicoquímicas (incompatibilidades de carácter fisicoquímico) 	1. Automedicación
2. Dosis del fármaco	2. Edad avanzada
3. Fármacos con elevada tasa de unión a proteínas plasmáticas	3. Enfermedades crónicas de curso inestable
4. Utilización de fármacos que se comportan como inductores o inhibidores enzimáticos	4. Enfermedades cuyo control depende esencialmente de un tratamiento farmacológico
5. Fármacos de estrecho margen terapéutico	5. Fármacos utilizados en situaciones clínicas de alto riesgo
 Características farmacocinéticas: – Afectar el ciclo intraorgánico 	6. Insuficiencia renal y hepática graves
 Características farmacodinámicas: Antagonismo Sinergia Potenciación 	7. Aparición de enfermedades intercurrentes que requieren la aplicación de un nuevo tratamiento sobre otro ya instaurado

TIPOS DE INTERACCIONES ENTRE FÁRMACOS

1. Interacciones químicas o farmacéuticas

√ inactivación química del/de los fármacos administrados

2. <u>Interacciones farmacocinéticas</u>


✓ Son debidas a las influencia que tiene un fármaco sobre el proceso ADME de otro

3. <u>Interacciones farmacodinámicas</u>

✓ Se modifica el efecto farmacológico, sin alterar su concentración

INTERACCIONES FARMACOCINÉTICAS:

Interacciones que afectan a la absorción

Fuente: Abel Hernández Chávez: Farmacología general. Una guía de estudio, www.accessmedicina.com Derechos © McGraw-Hill Education. Derechos Reservados.

Mecanismos que afectan a la absorción:

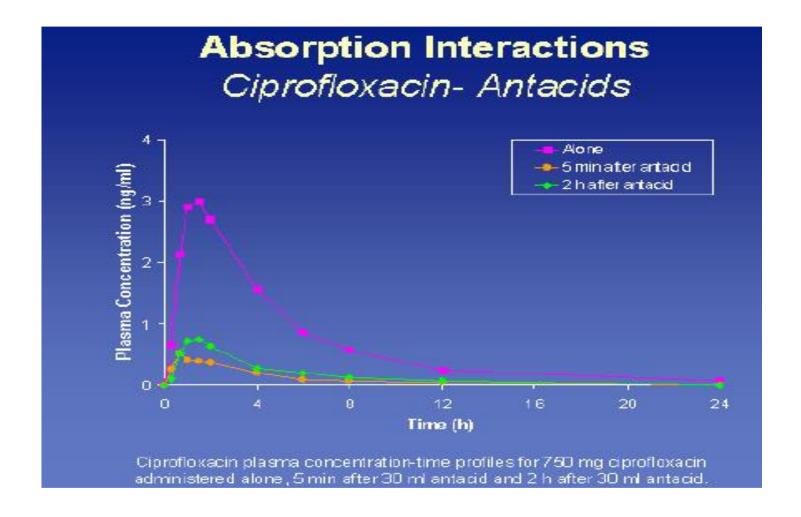
1. Formación de complejos no absorbibles:

- El hierro forma quelatos con quinolonas, hormona tiroidea, tetraciclinas, antiácidos
- Resinas fijadoras o de intercambio iónico interfieren con la absorción de fármacos administrados por v. oral (al ser secuestrados: digoxina)
- El Ca²⁺ y el Al³⁺ forma quelatos con tetraciclinas

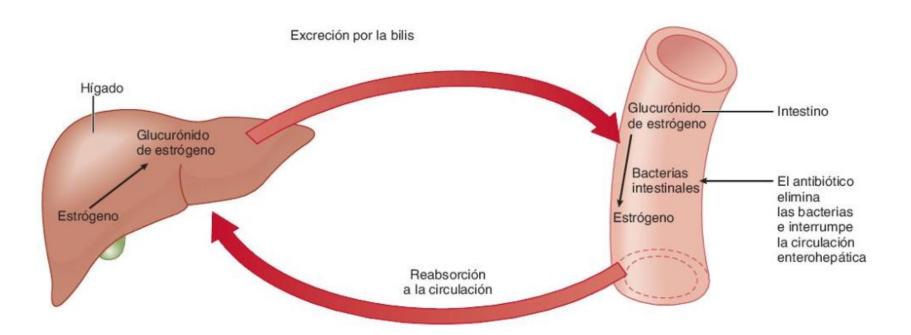
2. <u>Modificaciones en la motilidad gastrointestinal</u>

Puede modificar el tiempo en la absorción de un fármaco

- 1. Debido a su efecto terapéutico: Laxantes o antidiarreicos
- 2. Forma parte de sus efectos secundarios: atropina, opiáceos


3. <u>Cambios del pH gastrointestinal</u>:

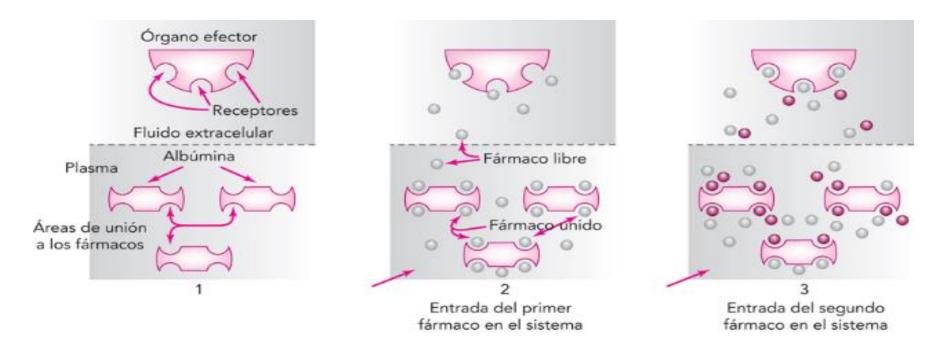
- Fármacos antisecretores: IBP, antagonistas de los R H₂ (Ranitidina)
- No se alcanzan concentraciones plasmáticas eficaces


4. <u>Destrucción de la flora bacteriana</u>:

- importante para los fármacos que presentan circulación enterohepática
- 5. <u>Cambios en el metabolismo intestinal (CYP)</u>
- 6. <u>Transporte por la glucoproteína P</u>:
 - Fármacos que la inducen (rifampicina) o que la inhiben (verapamilo, atorvastatina): Cambios en la biodisponibilidad del otro fármaco

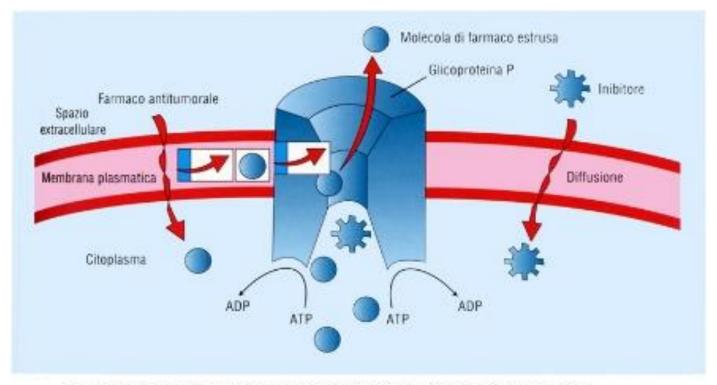
ALTERACIONES EN EL pH

CIRCULACIÓN ENTEROHEPÁTICA: ANTIBIÓTICOS-ANTICONCEPTIVOS ORALES



Tomado de Brenner G.M. y Stevens C.W. (2019). Farmacología Básica. 5º ed. Ed. Elsevier

Interacciones que afectan a la distribución:


- Competir por los sitios de unión en las proteínas plasmáticas: <u>Desplazamiento de la unión a proteínas</u> <u>plasmáticas</u>
 - ✓ El incremento de la fracción libre puede llevar a un mayor efecto farmacológico (Anticoagulantes orales AINEs)

Fuente: Abel Hernández Chávez: Farmacología general. Una guía de estudio, www.accessmedicina.com Derechos © McGraw-Hill Education. Derechos Reservados.

2. <u>Inhibición de la glucoproteína P y otros transportadores de membrana</u>

Rappresentazione schematica dell'attività della P-glicoproteina per l'estrusione di chemioterapici.

Interacciones que afectan al metabolismo:

El metabolismo de los fármacos se ve alterado cuando se administran medicamentos que:

- 1. Alteran el flujo sanguíneo hepático
- 2. <u>Inducen o inhiben enzimas implicadas en el metabolismo de los fármacos</u>
 - 2.1. Inductores del CYP (CYP1A2, CYP2C9, CYP2C19, CYP3A4).
 - 2.2. Inhibidores del CYP (CYP3A4)...
 - Es el mecanismo que con mayor frecuencia aparece
 - Está implicado en las reacciones adversas de toxicidad clínica relevante

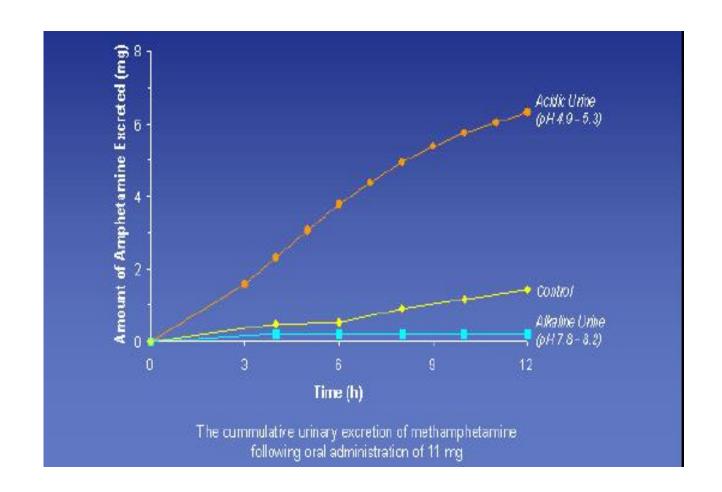
Inductores enzimáticos:

- √ Fármacos o sustancias que incrementan la síntesis de proteínas del CYP
- ✓ El grado de inducción depende de la dosis y la frecuencia de administración del fármaco inductor
- ✓ Se manifiesta tras varios días de administración continua
- ✓ Aumentan el aclaramiento del otro fármaco, reduciendo así su semivida de eliminación

Barbitúricos, rifampicina, carbamacepina

Inhibidores enzimáticos:

- ✓ Provocan interacciones potencialmente graves
- ✓ Reducen el aclaramiento del otro fármaco, aumentando su concentración en plasma
 - Zumo de pomelo con antagonistas de calcio
 - Itraconazol, eritromicina con los inhibidores de la HMG-CoA reductasa
 - El omeprazol (CYP2C19) con el clopidogrel


Interacciones a nivel de metabolismo Concentración plasmática de fármaco Inhibición enzimática **Toxicidad** (Inicio inmediato) Concentraciones terapéuticas Inducción enzimática □Eficacia □ (Inicio lento) Lüllmann H et al. Altas de Farmacología.1992

Interacciones que afectan a la excreción renal:

- 1. Fármacos que afectan el proceso de filtración glomerular:
 - AINEs
- 2. Fármacos que compiten por los mismos transportadores en el túbulo renal y afectan el proceso de **secreción tubular:**
 - <u>Probenecid</u> compite por el transportador que utilizan penicilinas y cefalosporinas
 - <u>Salicilatos</u> en pacientes tratados con metotrexato
 - Amiodarona bloquea la glucoproteína P en el túbulo renal: aumenta la toxicidad de la digoxina
- 3. Fármacos que modifican el pH urinario y afectan a la reabsorción tubular:
 - La <u>alcalinización de la orina</u> aumenta la excreción de <u>fármacos ácidos</u> (tiazidas, diuréticos del asa, antidepresivos, barbitúricos,...)
 - ✓ La <u>acidificación de la orina</u> aumenta la excreción de <u>fármacos básicos</u> (morfina, anfetaminas,...)

INTERACCIONES FARMACODINÁMICAS:

- 1. Se relacionan con los principales efectos tanto terapéuticos como adversos
- 2. Suelen ser comunes a los fármacos de un mismo grupo terapéutico
- Se deben a las acciones de dos o más fármacos sobre un mismo sistema efector o diana farmacológica. Se puede observar:
 - Un aumento de la intensidad del efecto: <u>efecto sinérgico</u>
 - Una reducción del efecto: antagonismo

