
Designing with the Cortex-M4

Kishore Dasari
Managing Director/GM
www.dspconcepts.com

• Introduction

• Review of signal processing design

• Software building blocks for signal processing

• Optimization techniques

• Conclusion

• Quick Demos

AgendaAgenda

www.dspconcepts.com

Who is DSP Concepts?

• an engineering services company specializing in
embedded audio product and technology
development

Market Size vs. Sophistication of Audio Processing

1k 10k 100k 1M 10M 100M 1B
Annual unit sales

C
om

pl
ex

ity
 o

f A
ud

io
 P

ro
ce

ss
in

g
H

ig
h

M
ed

iu
m

Lo
w

Broadcast

PA &
Evacuation

Professional

Powered
Speakers

Guitar Pedal
OEM Auto
Amplifier

TV

Home
Theater

iPod

Cell phone

Set top
box

Head
unit

Only
decoding

With
Speakers

Markets DSP Concepts
has experience in

Markets to focus on

PCs

Game
Consoles

Aftermarket
Auto

Amplifier

Cameras

Audio is
Primary

Audio is
Secondary

Speaker
phone

Aircraft
Radio

Digital signal controlDigital signal control -- blendblend

Digital
Signal

Controller

MCU
Low costs

Ease of use
C Programming

Interrupt handling
Ultra low power

DSP
Harvard architecture

Single cycle MAC
Floating Point
Barrel shifter

• FIR Filter

• IIR or recursive filter

• FFT Butterfly (radix-2)

Mathematical detailsMathematical details

     knxkhny
N

k






1

0

       
   21

21

21

210




nyanya

nxbnxbnxbny

     
       jekXkXkY

kXkXkY




212

211

Most operations are dominated by MACs
These can be on 8, 16 or 32 bit operations

Powerful MAC instructionsPowerful MAC instructions
OPERATION INSTRUCTION

16 x 16 = 32 SMULBB, SMULBT, SMULTB, SMULTT
16 x 16 + 32 = 32 SMLABB, SMLABT, SMLATB, SMLATT
16 x 16 + 64 = 64 SMLALBB, SMLALBT, SMLALTB, SMLALTT
16 x 32 = 32 SMULWB, SMULWT
(16 x 32) + 32 = 32 SMLAWB, SMLAWT
(16 x 16) ± (16 x 16) = 32 SMUAD, SMUADX, SMUSD, SMUSDX
(16 x 16) ± (16 x 16) + 32 = 32 SMLAD, SMLADX, SMLSD, SMLSDX
(16 x 16) ± (16 x 16) + 64 = 64 SMLALD, SMLALDX, SMLSLD, SMLSLDX

32 x 32 = 32 MUL
32 ± (32 x 32) = 32 MLA, MLS
32 x 32 = 64 SMULL, UMULL
(32 x 32) + 64 = 64 SMLAL, UMLAL
(32 x 32) + 32 + 32 = 64 UMAAL

32 ± (32 x 32) = 32 (upper) SMMLA, SMMLAR, SMMLS, SMMLSR
(32 x 32) = 32 (upper) SMMUL, SMMULR

All the above operations are single cycle on the Cortex-M4 processor

• IEEE 754 standard compliance

• Single-precision floating point math key to some
algorithms
▫ Add, subtract, multiply, divide, MAC and square root
▫ Fused MAC – provides higher precision

Floating point hardwareFloating point hardware

SP FP OPERATION CYCLE COUNT
USING FPU

Add/Subtract 1
Divide 14
Multiply 1
Multiply Accumulate (MAC) 3
Fused MAC 3
Square Root 14

Design Example

• 7-band Graphic Equalizer
▫ Cortex-M3 LPC1768 running at 120MHz
▫ Cortex-M4 running at 120MHz

• Designed using DSP Concept’s Audio Weaver
development environment
▫ a graphical drag-and-drop design environment

and a set of optimized audio processing libraries.

DSP example – graphic equalizer

Audio Weaver signal flow

Real-time Demo
• 7 band parametric EQ
• 32-bit precision
• Stereo processing
• 48 kHz sample rate

Results

Performance
• Cortex-M3 needed 1291 cycles (47.4% processor loading)
• Cortex-M4 needed only 299 cycles (11% processor loading).

How to program – assembly or C?

• Assembly ?
+ Can result in highest performance
–Difficult learning curve, longer development cycles
–Code reuse difficult – not portable

• C ?
+ Easy to write and maintain code, faster development

cycles
+ Code reuse possible, using third party software is

easier
+ Intrinsics provide direct access to certain processor

features
–Highest performance might not be possible
–Get to know your compiler !

C is definitely the
preferred approach!

C is definitely the
preferred approach!

 1Nh  2Nh  0h 1h

 2nx  )1( Nnx nx 1nx

coeffPtr

statePtr

Circular AddressingCircular Addressing
• Data in the delay chain is right shifted every sample.

This is very wasteful. How can we avoid this?
• Circular addressing avoids this data movement

Linear addressing of coefficients.

Circular addressing of states

• Block based processing
• Inner loop consists of:

▫ Dual memory fetches
▫ MAC
▫ Pointer updates with

circular addressing

• Block based processing
• Inner loop consists of:

▫ Dual memory fetches
▫ MAC
▫ Pointer updates with

circular addressing

FIR Filter Standard C CodeFIR Filter Standard C Code
void fir(q31_t *in, q31_t *out, q31_t *coeffs, int *stateIndexPtr,

int filtLen, int blockSize)
{

int sample;
int k;
q31_t sum;
int stateIndex = *stateIndexPtr;

for(sample=0; sample < blockSize; sample++)
{

state[stateIndex++] = in[sample];
sum=0;
for(k=0;k<filtLen;k++)

{
sum += coeffs[k] * state[stateIndex];
stateIndex--;
if (stateIndex < 0)

{
stateIndex = filtLen-1;

}
}

out[sample]=sum;
}
*stateIndexPtr = stateIndex;

}

• 32-bit DSP processor assembly code
• Only the inner loop is shown, executes in a single cycle
• Optimized assembly code, cannot be achieved in C

FIR Filter DSP CodeFIR Filter DSP Code

lcntr=r2, do FIRLoop until lce;
FIRLoop: f12=f0*f4, f8=f8+f12, f4=dm(i1,m4), f0=pm(i12,m12);

Zero overhead loop State fetch with
circular addressing

Coeff fetch with
linear addressingMultiply and

accumulate previous

Fetch coeffs[k] 2 cycles
Fetch state[stateIndex] 1 cycle
MAC 1 cycle
stateIndex-- 1 cycle
Circular wrap 4 cycles
Loop overhead 3 cycles

Total 12 cycles

CortexCortex--M inner loopM inner loop
for(k=0;k<filtLen;k++)
{

sum += coeffs[k] * state[stateIndex];
stateIndex--;
if (stateIndex < 0)

{
stateIndex = filtLen-1;

}
}

Even though the MAC executes in 1 cycle,
there is overhead compared to a DSP.

How can this be improved on the Cortex-M4 ?

• Circular addressing alternatives

• Loop unrolling

• Caching of intermediate variables

• Extensive use of SIMD and intrinsics

Optimization strategiesOptimization strategies

18

Circular Buffering alternativeCircular Buffering alternative

 0h 1h

 0x  1x  2x  3x  4x  5x

 2h 3h 4h 5h

 5x  6x  7x  8x

 Create a buffer of length N + blockSize-1 and
shift this once per block

 Example. N = 6, blockSize = 4. Size of state
buffer = 9.

Block 1 Block 2

Circular Buffering alternativeCircular Buffering alternative

 0h 1h

 0x  1x  2x  3x  4x  5x

 2h 3h 4h 5h

 5x  6x  7x  8x

Block 2 Block 3

 Create a circular buffer of length N + blockSize-1
and shift this once per block

 Example. N = 6, blockSize = 4. Size of state
buffer = 9.

Circular Buffering alternativeCircular Buffering alternative

 0h 1h

 0x  1x  2x  3x  4x  5x

 2h 3h 4h 5h

 5x  6x  7x  8x

Block 3Block 4

 Create a circular buffer of length N + blockSize-1
and shift this once per block

 Example. N = 6, blockSize = 4. Size of state
buffer = 9.

Fetch coeffs[k] 2 cycles
Fetch state[stateIndex] 1 cycle
MAC 1 cycle
stateIndex++ 1 cycle
Loop overhead 3 cycles

Total 8 cycles

CortexCortex--M4 code with changeM4 code with change
for(k=0;k<filtLen;k++)
{

sum += coeffs[k] * state[stateIndex];
stateIndex++;

}

• DSP assembly code = 1 cycle

• Cortex-M4 standard C code takes 12 cycles

 Using circular addressing alternative = 8 cycles

Improvement in performanceImprovement in performance

23

33% better but still not
comparable to the DSP

Lets try loop unrolling

• This is an efficient language-independent optimization
technique and makes up for the lack of a zero overhead
loop on the Cortex-M4

• There is overhead inherent in every loop for checking the
loop counter and incrementing it for every iteration (3
cycles on the Cortex-M.)

• Loop unrolling processes ‘n’ loop indexes in one loop
iteration, reducing the overhead by ‘n’ times.

Loop unrollingLoop unrolling

24

Fetch coeffs[k] 2 x 4 = 8 cycles
Fetch state[stateIndex] 1 x 4 = 4 cycles
MAC 1 x 4 = 4 cycles
stateIndex++ 1 x 4 = 4 cycles
Loop overhead 3 x 1 = 3 cycles

Total 23 cycles for 4 taps

= 5.75 cycles per tap

Unroll Inner Loop by 4Unroll Inner Loop by 4
for(k=0;k<filtLen;k++)
{

sum += coeffs[k] * state[stateIndex];
stateIndex++;
sum += coeffs[k] * state[stateIndex];
stateIndex++;
sum += coeffs[k] * state[stateIndex];
stateIndex++;
sum += coeffs[k] * state[stateIndex];
stateIndex++;

}

• DSP assembly code = 1 cycle

• Cortex-M4 standard C code takes 12 cycles

 Using circular addressing alternative = 8 cycles
 After loop unrolling < 6 cycles

Improvement in performanceImprovement in performance

26

25% further improvement
But a large gap still exists

Lets try SIMD

• Many image and video processing, and communications
applications use 8- or 16-bit data types.

• SIMD speeds these up
▫ 16-bit data yields a 2x speed

improvement over 32-bit
▫ 8-bit data yields a 4x speed

improvement

• Access to SIMD is via
compiler intrinsics

• Example dual 16-bit MAC
▫ SUM=__SMLALD(C, S, SUM)

Apply SIMDApply SIMD

H

32-bit register

LH

32-bit register

L

Sum

16-bit 16-bit

32-bit

64-bit

64-bit

16-bit
16-bit

64-bit

32-bit

• 16-bit example
• Access two neighbouring values using a single 32-bit

memory read

Data organization with SIMDData organization with SIMD

 0h 1h

 0x  4x  5x

 2h 3h 4h 5h

 5x  6x  7x  8x 1x  2x  3x

Inner Loop with 16Inner Loop with 16--bit SIMDbit SIMD
filtLen = filtLen << 2;
for(k = 0; k < filtLen; k++)
{

c = *coeffs++; // 2 cycles
s = *state++; // 1 cycle
sum = __SMLALD(c, s, sum); // 1 cycle
c = *coeffs++; // 2 cycles
s = *state++; // 1 cycle
sum = __SMLALD(c, s, sum); // 1 cycle
c = *coeffs++; // 2 cycles
s = *state++; // 1 cycle
sum = __SMLALD(c, s, sum); // 1 cycle
c = *coeffs++; // 2 cycles
s = *state++; // 1 cycle
sum = __SMLALD(c, s, sum); // 1 cycle

} // 3 cycles

19 cycles total. Computes 8 MACs
2.375 cycles per filter tap

• DSP assembly code = 1 cycle

• Cortex-M4 standard C code takes 12 cycles

 Using circular addressing alternative = 8 cycles
 After loop unrolling < 6 cycles
 After using SIMD instructions < 2.5 cycles

Improvement in performanceImprovement in performance

That’s much better!
But is there anything more?

One more idea left

• FIR filter is extremely memory intensive. 12 out of 19
cycles in the last code portion deal with memory accesses
▫ 2 consecutive loads take
 4 cycles on Cortex-M3, 3 cycles on Cortex-M4

▫ MAC takes
 3-7 cycles on Cortex-M3, 1 cycle on Cortex-M4

• When operating on a block of data, memory bandwidth
can be reduced by simultaneously computing multiple
outputs and caching several coefficients and state variables

Caching Intermediate ValuesCaching Intermediate Values

31

 0h 1h

 0x  4x  5x

 2h 3h 4h 5h

 5x  6x  7x  8x 1x  2x  3x

c0

Increment by 16-bits

statePtr++

Increment by 32-bits

coeffsPtr++

x0

x1

x2

x3

x0

x1

x2

x3

c0

Data Organization with CachingData Organization with Caching

Compute 4 Outputs Simultaneously:
sum0 = __SMLALD(x0, c0, sum0)
sum1 = __SMLALD(x1, c0, sum1)
sum2 = __SMLALD(x2, c0, sum2)
sum3 = __SMLALD(x3, c0, sum3)

Final FIR CodeFinal FIR Code
sample = blockSize/4;

do
{

sum0 = sum1 = sum2 = sum3 = 0;
statePtr = stateBasePtr;
coeffPtr = (q31_t *)(S->coeffs);
x0 = *(q31_t *)(statePtr++);
x1 = *(q31_t *)(statePtr++);

i = numTaps>>2;
do
{

c0 = *(coeffPtr++);
x2 = *(q31_t *)(statePtr++);
x3 = *(q31_t *)(statePtr++);
sum0 = __SMLALD(x0, c0, sum0);
sum1 = __SMLALD(x1, c0, sum1);
sum2 = __SMLALD(x2, c0, sum2);
sum3 = __SMLALD(x3, c0, sum3);

c0 = *(coeffPtr++);
x0 = *(q31_t *)(statePtr++);
x1 = *(q31_t *)(statePtr++);

sum0 = __SMLALD(x0, c0, sum0);
sum1 = __SMLALD(x1, c0, sum1);
sum2 = __SMLALD (x2, c0,

sum2);
sum3 = __SMLALD (x3, c0,

sum3);
} while(--i);
*pDst++ = (q15_t) (sum0>>15);

*pDst++ = (q15_t) (sum1>>15);
*pDst++ = (q15_t) (sum2>>15);
*pDst++ = (q15_t) (sum3>>15);

stateBasePtr= stateBasePtr + 4;
} while(--sample);

Uses loop unrolling, SIMD intrinsics,
caching of states and coefficients,
and work around circular addressing
by using a large state buffer.
Inner loop is 26 cycles for a total of
16, 16-bit MACs.
Only 1.625 cycles per filter tap!

Uses loop unrolling, SIMD intrinsics,
caching of states and coefficients,
and work around circular addressing
by using a large state buffer.
Inner loop is 26 cycles for a total of
16, 16-bit MACs.
Only 1.625 cycles per filter tap!

FIR Application - use case

• DSP assembly code = 1 cycle

• Cortex-M4 standard C code takes 12 cycles

 Using circular addressing alternative = 8 cycles
 After loop unrolling < 6 cycles
 After using SIMD instructions < 2.5 cycles
 After caching intermediate values ~ 1.6 cycles

CortexCortex--M4 FIR performanceM4 FIR performance

Cortex-M4 C code now comparable in performance

• Basic Cortex-M4 C code quite reasonable performance for
simple algorithms

• Through simple optimizations, you can get to high
performance on the Cortex-M4

• You DO NOT have to write Cortex-M4 assembly, all
optimizations can be done completely in C

Summary of optimizationsSummary of optimizations

36

• Basic math – vector mathematics
• Fast math – sin, cos, sqrt etc
• Interpolation – linear, bilinear
• Complex math
• Statistics – max, min,RMS etc
• Filtering – IIR, FIR, LMS etc
• Transforms – FFT(real and complex) , Cosine transform etc
• Matrix functions
• PID Controller, Clarke and Park transforms
• Support functions – copy/fill arrays, data type conversions etc

Variants for functions across q7,q15,q31 and f32 data types

CMSIS DSP library snapshotCMSIS DSP library snapshot

DSP example – MP3 audio playback

MHz bandwidth requirement for MP3 decode

Cortex-M4 approaches
specialized audio DSP

performance !

Cortex-M4 approaches
specialized audio DSP

performance !

Quick Demos

