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Who is DSP Concepts?

• an engineering services company specializing in
embedded audio product and technology
development



Market Size vs. Sophistication of Audio Processing
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Digital signal controlDigital signal control -- blendblend

Digital
Signal

Controller

MCU
Low costs

Ease of use
C Programming

Interrupt handling
Ultra low power

DSP
Harvard architecture

Single cycle MAC
Floating Point
Barrel shifter



• FIR Filter

• IIR or recursive filter

• FFT Butterfly (radix-2)

Mathematical detailsMathematical details

     knxkhny
N

k






1

0

       
   21

21

21

210




nyanya

nxbnxbnxbny

     
       jekXkXkY

kXkXkY




212

211

Most operations are dominated by MACs
These can be on 8, 16 or 32 bit operations



Powerful MAC instructionsPowerful MAC instructions
OPERATION INSTRUCTION

16 x 16 = 32 SMULBB, SMULBT, SMULTB, SMULTT
16 x 16 + 32 = 32 SMLABB, SMLABT, SMLATB, SMLATT
16 x 16 + 64 = 64 SMLALBB, SMLALBT, SMLALTB, SMLALTT
16 x 32 = 32 SMULWB, SMULWT
(16 x 32) + 32 = 32 SMLAWB, SMLAWT
(16 x 16) ± (16 x 16) = 32 SMUAD, SMUADX, SMUSD, SMUSDX
(16 x 16) ± (16 x 16) + 32 = 32 SMLAD, SMLADX, SMLSD, SMLSDX
(16 x 16) ± (16 x 16) + 64 = 64 SMLALD, SMLALDX, SMLSLD, SMLSLDX

32 x 32 = 32 MUL
32 ± (32 x 32) = 32 MLA, MLS
32 x 32 = 64 SMULL, UMULL
(32 x 32) + 64 = 64 SMLAL, UMLAL
(32 x 32) + 32 + 32 = 64 UMAAL

32 ± (32 x 32) = 32 (upper) SMMLA, SMMLAR, SMMLS, SMMLSR
(32 x 32) = 32 (upper) SMMUL, SMMULR

All the above operations are single cycle on the Cortex-M4 processor



• IEEE 754 standard compliance

• Single-precision floating point math key to some
algorithms
▫ Add, subtract, multiply, divide, MAC and square root
▫ Fused MAC – provides higher precision

Floating point hardwareFloating point hardware

SP FP OPERATION CYCLE COUNT
USING FPU

Add/Subtract 1
Divide 14
Multiply 1
Multiply Accumulate (MAC) 3
Fused MAC 3
Square Root 14



Design Example

• 7-band Graphic Equalizer
▫ Cortex-M3 LPC1768 running at 120MHz
▫ Cortex-M4 running at 120MHz

• Designed using DSP Concept’s Audio Weaver
development environment
▫ a graphical drag-and-drop design environment

and a set of optimized audio processing libraries.



DSP example – graphic equalizer



Audio Weaver signal flow

Real-time Demo
• 7 band parametric EQ
• 32-bit precision
• Stereo processing
• 48 kHz sample rate



Results

Performance
• Cortex-M3  needed 1291 cycles (47.4% processor loading)
• Cortex-M4 needed only 299 cycles (11% processor loading).



How to program – assembly or C?

• Assembly ?
+ Can result in highest performance
–Difficult learning curve, longer  development cycles
–Code reuse difficult – not portable

• C ?
+ Easy to write and maintain code, faster development

cycles
+ Code reuse possible, using third party software is

easier
+ Intrinsics provide direct access to certain processor

features
–Highest performance might not be possible
–Get to know your compiler !

C is definitely the
preferred approach!

C is definitely the
preferred approach!
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coeffPtr

statePtr

Circular AddressingCircular Addressing
• Data in the delay chain is right shifted every sample.

This is very wasteful.  How can we avoid this?
• Circular addressing avoids this data movement

Linear addressing of coefficients.

Circular addressing of states



• Block based processing
• Inner loop consists of:

▫ Dual memory fetches
▫ MAC
▫ Pointer updates with

circular addressing

• Block based processing
• Inner loop consists of:

▫ Dual memory fetches
▫ MAC
▫ Pointer updates with

circular addressing

FIR Filter Standard C CodeFIR Filter Standard C Code
void fir(q31_t *in, q31_t *out, q31_t *coeffs, int *stateIndexPtr,

int filtLen, int blockSize)
{

int sample;
int k;
q31_t sum;
int stateIndex = *stateIndexPtr;

for(sample=0; sample < blockSize; sample++)
{

state[stateIndex++] = in[sample];
sum=0;
for(k=0;k<filtLen;k++)

{
sum += coeffs[k] * state[stateIndex];
stateIndex--;
if (stateIndex < 0)

{
stateIndex = filtLen-1;

}
}

out[sample]=sum;
}
*stateIndexPtr = stateIndex;

}



• 32-bit DSP processor assembly code
• Only the inner loop is shown, executes in a single cycle
• Optimized assembly code, cannot be achieved in C

FIR Filter DSP CodeFIR Filter DSP Code

lcntr=r2, do FIRLoop until lce;
FIRLoop:  f12=f0*f4, f8=f8+f12, f4=dm(i1,m4), f0=pm(i12,m12);

Zero overhead loop State fetch with
circular addressing

Coeff fetch with
linear addressingMultiply and

accumulate previous



Fetch coeffs[k] 2 cycles
Fetch state[stateIndex] 1 cycle
MAC 1 cycle
stateIndex-- 1 cycle
Circular wrap 4 cycles
Loop overhead 3 cycles

------------
Total 12 cycles

CortexCortex--M inner loopM inner loop
for(k=0;k<filtLen;k++)
{

sum += coeffs[k] * state[stateIndex];
stateIndex--;
if (stateIndex < 0)

{
stateIndex = filtLen-1;

}
}

Even though the MAC executes in 1 cycle,
there is overhead compared to a DSP.

How can this be improved on the Cortex-M4 ?



• Circular addressing alternatives

• Loop unrolling

• Caching of intermediate variables

• Extensive use of SIMD and intrinsics

Optimization strategiesOptimization strategies

18



Circular Buffering alternativeCircular Buffering alternative

 0h 1h
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 5x  6x  7x  8x

 Create a buffer of length N + blockSize-1 and
shift this once per block

 Example.  N = 6, blockSize = 4.  Size of state
buffer = 9.

Block 1 Block 2



Circular Buffering alternativeCircular Buffering alternative

 0h 1h

 0x  1x  2x  3x  4x  5x

 2h 3h 4h 5h

 5x  6x  7x  8x

Block 2 Block 3

 Create a circular buffer of length N + blockSize-1
and shift this once per block

 Example.  N = 6, blockSize = 4.  Size of state
buffer = 9.



Circular Buffering alternativeCircular Buffering alternative

 0h 1h
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 5x  6x  7x  8x

Block 3Block 4

 Create a circular buffer of length N + blockSize-1
and shift this once per block

 Example.  N = 6, blockSize = 4.  Size of state
buffer = 9.



Fetch coeffs[k] 2 cycles
Fetch state[stateIndex] 1 cycle
MAC 1 cycle
stateIndex++ 1 cycle
Loop overhead 3 cycles

------------
Total 8 cycles

CortexCortex--M4 code with changeM4 code with change
for(k=0;k<filtLen;k++)
{

sum += coeffs[k] * state[stateIndex];
stateIndex++;

}



• DSP assembly code = 1 cycle

• Cortex-M4 standard C code takes 12 cycles

 Using circular addressing alternative = 8 cycles

Improvement in performanceImprovement in performance

23

33% better but still not
comparable to the DSP

Lets try loop unrolling



• This is an efficient language-independent optimization
technique and makes up for the lack of a zero overhead
loop on the Cortex-M4

• There is overhead inherent in every loop for checking the
loop counter and incrementing it for every iteration (3
cycles on the Cortex-M.)

• Loop unrolling processes ‘n’ loop indexes in one loop
iteration, reducing the overhead by ‘n’ times.

Loop unrollingLoop unrolling

24



Fetch coeffs[k] 2 x 4 = 8 cycles
Fetch state[stateIndex] 1 x 4 = 4 cycles
MAC 1 x 4 = 4 cycles
stateIndex++ 1 x 4 = 4 cycles
Loop overhead 3 x 1 = 3 cycles

------------
Total 23 cycles for 4 taps

= 5.75 cycles per tap

Unroll Inner Loop by 4Unroll Inner Loop by 4
for(k=0;k<filtLen;k++)
{

sum += coeffs[k] * state[stateIndex];
stateIndex++;
sum += coeffs[k] * state[stateIndex];
stateIndex++;
sum += coeffs[k] * state[stateIndex];
stateIndex++;
sum += coeffs[k] * state[stateIndex];
stateIndex++;

}



• DSP assembly code = 1 cycle

• Cortex-M4 standard C code takes 12 cycles

 Using circular addressing alternative = 8 cycles
 After loop unrolling < 6 cycles

Improvement in performanceImprovement in performance

26

25% further improvement
But a large gap still exists

Lets try SIMD



• Many image and video processing, and communications
applications use 8- or 16-bit data types.

• SIMD speeds these up
▫ 16-bit data yields a 2x speed

improvement over 32-bit
▫ 8-bit data yields a 4x speed

improvement

• Access to SIMD is via
compiler intrinsics

• Example dual 16-bit MAC
▫ SUM=__SMLALD(C, S, SUM)

Apply SIMDApply SIMD

H

32-bit register

LH

32-bit register

L

Sum

16-bit 16-bit

32-bit

64-bit

64-bit

16-bit
16-bit

64-bit

32-bit



• 16-bit example
• Access two neighbouring values using a single 32-bit

memory read

Data organization with SIMDData organization with SIMD

 0h 1h

 0x  4x  5x

 2h 3h 4h 5h

 5x  6x  7x  8x 1x  2x  3x



Inner Loop with 16Inner Loop with 16--bit SIMDbit SIMD
filtLen = filtLen << 2;
for(k = 0; k < filtLen; k++)
{

c = *coeffs++; // 2 cycles
s = *state++; // 1 cycle
sum = __SMLALD(c, s, sum); // 1 cycle
c = *coeffs++; // 2 cycles
s = *state++; // 1 cycle
sum = __SMLALD(c, s, sum); // 1 cycle
c = *coeffs++; // 2 cycles
s = *state++; // 1 cycle
sum = __SMLALD(c, s, sum); // 1 cycle
c = *coeffs++; // 2 cycles
s = *state++; // 1 cycle
sum = __SMLALD(c, s, sum); // 1 cycle

} // 3 cycles

19 cycles total.  Computes 8 MACs
2.375 cycles per filter tap



• DSP assembly code = 1 cycle

• Cortex-M4 standard C code takes 12 cycles

 Using circular addressing alternative = 8 cycles
 After loop unrolling < 6 cycles
 After using SIMD instructions  < 2.5 cycles

Improvement in performanceImprovement in performance

That’s much better!
But is there anything more?

One more idea left



• FIR filter is extremely memory intensive.  12 out of 19
cycles in the last code portion deal with memory accesses
▫ 2 consecutive loads take
 4 cycles on Cortex-M3, 3 cycles on Cortex-M4

▫ MAC takes
 3-7 cycles on Cortex-M3, 1 cycle on Cortex-M4

• When operating on a block of data, memory bandwidth
can be reduced by simultaneously computing multiple
outputs and caching several coefficients and state variables

Caching Intermediate ValuesCaching Intermediate Values

31



 0h 1h

 0x  4x  5x

 2h 3h 4h 5h

 5x  6x  7x  8x 1x  2x  3x

c0

Increment by 16-bits

statePtr++

Increment by 32-bits

coeffsPtr++

x0

x1

x2

x3

x0

x1

x2

x3

c0

Data Organization with CachingData Organization with Caching

Compute 4 Outputs Simultaneously:
sum0 = __SMLALD(x0, c0, sum0)
sum1 = __SMLALD(x1, c0, sum1)
sum2 = __SMLALD(x2, c0, sum2)
sum3 = __SMLALD(x3, c0, sum3)



Final FIR CodeFinal FIR Code
sample = blockSize/4;

do
{

sum0 = sum1 = sum2 = sum3 = 0;
statePtr = stateBasePtr;
coeffPtr = (q31_t *)(S->coeffs);
x0 = *(q31_t *)(statePtr++);
x1 = *(q31_t *)(statePtr++);

i = numTaps>>2;
do
{

c0 = *(coeffPtr++);
x2 = *(q31_t *)(statePtr++);
x3 = *(q31_t *)(statePtr++);
sum0  = __SMLALD(x0, c0, sum0);
sum1  = __SMLALD(x1, c0, sum1);
sum2  = __SMLALD(x2, c0, sum2);
sum3  = __SMLALD(x3, c0, sum3);

c0 = *(coeffPtr++);
x0 = *(q31_t *)(statePtr++);
x1 = *(q31_t *)(statePtr++);

sum0  = __SMLALD(x0, c0, sum0);
sum1  = __SMLALD(x1, c0, sum1);
sum2  = __SMLALD (x2, c0,

sum2);
sum3  = __SMLALD (x3, c0,

sum3);
} while(--i);
*pDst++ = (q15_t) (sum0>>15);

*pDst++ = (q15_t) (sum1>>15);
*pDst++ = (q15_t) (sum2>>15);
*pDst++ = (q15_t) (sum3>>15);

stateBasePtr= stateBasePtr + 4;
} while(--sample);

Uses loop unrolling, SIMD intrinsics,
caching of states and coefficients,
and work around circular addressing
by using a large state buffer.
Inner loop is 26 cycles for a total of
16, 16-bit MACs.
Only 1.625 cycles per filter tap!

Uses loop unrolling, SIMD intrinsics,
caching of states and coefficients,
and work around circular addressing
by using a large state buffer.
Inner loop is 26 cycles for a total of
16, 16-bit MACs.
Only 1.625 cycles per filter tap!



FIR Application - use case



• DSP assembly code = 1 cycle

• Cortex-M4 standard C code takes 12 cycles

 Using circular addressing alternative = 8 cycles
 After loop unrolling < 6 cycles
 After using SIMD instructions  < 2.5 cycles
 After caching intermediate values ~ 1.6 cycles

CortexCortex--M4 FIR performanceM4 FIR performance

Cortex-M4 C code now comparable in performance



• Basic Cortex-M4 C code quite reasonable performance for
simple algorithms

• Through simple optimizations, you can get to high
performance on the Cortex-M4

• You DO NOT have to write Cortex-M4 assembly, all
optimizations can be done completely in C

Summary of optimizationsSummary of optimizations

36



• Basic math – vector mathematics
• Fast math – sin, cos, sqrt etc
• Interpolation – linear, bilinear
• Complex math
• Statistics – max, min,RMS etc
• Filtering – IIR, FIR, LMS etc
• Transforms – FFT(real and complex) , Cosine transform etc
• Matrix functions
• PID Controller, Clarke and Park transforms
• Support functions – copy/fill arrays, data type conversions etc

Variants for functions across q7,q15,q31 and f32 data types

CMSIS DSP library snapshotCMSIS DSP library snapshot



DSP example – MP3 audio playback

MHz bandwidth requirement for MP3 decode

Cortex-M4 approaches
specialized audio DSP

performance !

Cortex-M4 approaches
specialized audio DSP

performance !



Quick Demos


