
 1

Testing conf

In this document we provide some guidelines for testing the conf multimedia application. For all tests
we expect audio quality to be high.

Perform all tests with ‘verbose’ mode set to on, and check the behavior of sent and received packets.
For all cases, identify which should be the appropriate behavior, and observe if this behavior result from
your tests?

Audio formats. Check communication for both audio formats.

Accurate timing. Identify all the events in your code should be performed in a regular fashion (i.e.

periodically). Check if this true using the diffTime which you can find in the code repository. This tool

estimates the time difference between two events shown by strace, to ease your validation of the
periodicity of your code.
Assume, for example, that you think that the event of writing to a given socket/file descriptor (let’s say
file descriptor number 5) should be periodic. To check this assumption, you should execute

strace –tt –o confTrace ./conf …

cat confTrace | grep ‘write\(5’ | ./diffTime

-tt request strace to show the time at which each system call is performed

The grep command is used to select which events are relevant, and remove any non-relevant events in

the trace provided by strace

Finally diffTime computes the time between two events (instead of using absolute time values)

You can check multiple events by using ‘grep –E’. For example, you can filter out all lines except those
containing ‘select’, ‘write(4’ and ‘read(4’ by executing
cat confTrace | grep –E ‘select|write\(4|read\(4’ | ./diffTime

grep –E enables the use of regular expressions. Note that characters such as ‘(‘ must be preceded by

the escape character ‘\’.

Be sure that your code only blocks at select. Check that the time between two consecutive
reproductions (recordings) of packets is roughly equal to the packet duration

Buffering. Is buffering working? Use large buffering values, in the order of seconds, and check if the
communication is actually delayed for that period.
How does your application behave when buffering is set to 0? Is this normal?

Packet size. The application should work for different packet sizes. Small packet sizes may pose some
problems for inefficient applications. Good quality should be achieved at least starting with 64-bytes
packets.

 2

RTP (and RTCP format). The best way to check if RTP (and eventually RTCP) messages have been

formed correctly is to use rtpdump (see http://www.cs.columbia.edu/~hgs/rtptools, installed in the
labs), a third party tool. To use it, you need THREE different systems (either three physical computers,
or three virtual ones). It will not work in just two.
Let’s name them H1, H2, H3, and consider MCAST_ADDR a valid multicast address:

H1:~> ./conf first –mMCAST_ADDR

H2:~> rtpdump MCAST_ADDR/5004

H3:~> ./conf second MCAST_ADDR

In this case, H3 is sending packets to the multicast address to which H1 and H2 are listening. H1 uses
unicast to send its packets to H3.

 You should check that

- rtpdump identifies the packet format, similar to the following:
1372261892.985270 RTP len=140 from=163.117.144.133:5004 v=2 p=0 x=0 cc=0 m=0

pt=100 (????,0,0) seq=0 ts=0 ssrc=0x0

1372261893.001268 RTP len=140 from=163.117.144.133:5004 v=2 p=0 x=0 cc=0 m=0

pt=100 (????,0,0) seq=1 ts=128 ssrc=0x0

An example of BAD format identification (i.e., there is a problem with the way the packet is built) is
1372261893.066233 VATD len=140 from=163.117.144.133:5004 nsid=0 flags=0x97

confid=4 ts=3077347072

- The sequence number increases 1 by 1
- The timestamp value increases appropriately (i.e., in the number of samples contained in every

packet)

Lost packets. Check that your application behaves properly when packets are lost. To check this, in the
part of your code that sends to the other party, insert code changing the next sequence number from 50
to 52 (meaning that your sending code will send a packet numbered 48, 49, then 52, 53, 54, etc.).
Check that the code copies twice (and reproduces three times) packet number 49.

http://www.cs.columbia.edu/~hgs/rtptools

