
Introduction to Embedded System

SEDA-GITT

SEDA. Tema 1-1

Future of IT?

 According to forecasts
characterized by the terms such
as

  Post-PC era

  Disappearing computer

  Ubiquitous computing

  Pervasive computing

  Ambient intelligence

  Embedded systems

2

What is an embedded systems?
3

Embedded systems (ES) = information processing
systems embedded into a larger product

What is an embedded system?
4

Consumer
Electronics

Automobile

Household Appliances

Communication

Office Equipments

Avionics

An embedded system example -- a digital camera

5

Microcontroller!

CCD preprocessor! Pixel coprocessor!
A2D!

D2A!

JPEG codec!

DMA controller!

Memory controller! ISA bus interface! UART! LCD ctrl!

Display ctrl!

Multiplier/Accum!

Digital camera chip!

lens!

CCD!

An embedded system example -- a digital camera
6

Application areas

1.  Automotive electronics

2.  Aircraft electronics

3.  Trains

4.  Telecommunication

7

Application areas
8

7.  Authentication

6.  Military applications

5.  Medical systems
e.g. “artificial eye”

Application areas

8.  Consumer
electronics

9

Application areas
10

10. Smart buildings

9.  Fabrication equipment

Application areas
11

11. Robotics

„Pipe-climber“ Robot
„Johnnie“ (C
ourtesy and
©: H.Ulbrich,
F. Pfeiffer,
TU
München)

Embedded systems from real life

 Typical embedded solution
  Integrates several technologies:

–  Radio transmissions
–  Sensor technology
–  Magnetic inductance for power
–  Computer used for calibration

  Impossible without the computer
 Meaningless without the electronics

12

Embedded systems from real life

13

Smart Beer Glass

CPU and reading coil in the
table. Reports the level of
fluid in the glass, alerts
servers when close to empty

Embedded systems from real life

Massive signal processing
Several processing tasks per connected call

Based on DSPs
Standard or custom
100s of processors

Multiprocessor
8-bit/32-bit for UI; DSP for signals
32-bit in IR port; 32-bit in Bluetooth

8-100 MB of memory
All custom chips

14

Mobile Phones and Base Stations

Embedded systems from real life

15

Mobile Phones

SEDA-GIEC

Embedded systems from real life

16

Mobile Phones

SEDA-GIEC

Embedded systems from real life

Multiple processors
Up to 100
Networked together

Multiple networks
Body, engine, telematics, media,
safety

17

Cars

Functions by embedded processing:
ABS: Anti-lock braking systems
ESP: Electronic stability control
Airbags
Efficient automatic gearboxes
Theft prevention with smart keys
Blind-angle alert systems
... etc ...

Large diversity in processor types:
8-bit – door locks, lights, etc.
16-bit – most functions
32-bit – engine control, airbags

Embedded systems from real life

Functions requiring computers:
Radar
Weapons
Damage control
Navigation
basically everything

Computers:
Large servers
1000s of processors

18

Extremely Large

Embedded systems from real life

Custom processors
Graphics, sound

32-bit processors
IR, Bluetooth
Network, WLAN
Harddisk
RAID controllers

8-bit processors
USB
Keyboard, mouse

19

Inside Your PC

Components of Embedded Systems

 Analog Components
  Sensors, Actuators, Controllers, …

 Digital Components
  Processor, Coprocessors
  Memories
  Controllers, Buses
  Application Specific Integrated Circuits (ASIC)

 Converters – A2D, D2A, …
 Software

  Application Programs
  Exception Handlers

20

Components of Embedded Systems
21

Components of Embedded Systems
22

Components of Embedded Systems
23

Components of Embedded Systems

  1) Main application software:!
  performs series of tasks or multiple tasks concurrently."
  constrained due to low memory, low processing power

requirement etc."
  2. Real Time Operating System (RTOS):!

  supervises the application software."
  provides a mechanism to let the processor run a process as per

scheduling."
  performs context-switching between various processes (tasks)."
  organizes access to a resource in sequence of the series of tasks

of the system."
  schedules their working and execution by following a plan to

control the latencies and to meet the deadlines."
  sets the rules during the execution of the application software.

24

Growing importance of embedded systems

  Growing economical importance of embedded systems: [www.itfacts.biz]

•  Worldwide mobile phone sales surpassed 156.4 mln units in Q2
2004, a 35% increase from Q2 2003.

•  The worldwide portable flash player market exploded in 2003
and is expected to grow from 12.5 mln units in 2003 to over 50
mln units in 2008.

•  Global 3G subscribers will grow from an estimated 45 mln at the
end of 2004 to 85 mln in 2005.

•  The number of broadband lines worldwide increased by almost
55% to over 123 mln in the 12 months to the end of June 2004.

•  Today's DVR (digital video recorders) users - 5% of households -
will grow to 41% within five years.

•  79% of all high-end processors are used in embedded systems
  The future is embedded, Embedded is the future!

25

Characteristics of Embedded Systems
26

Characteristics of Embedded Systems (1)

  Must be dependable,
•  Reliability R(t) = probability of system working correctly

provided that is was working at t=0
•  Maintainability M(d) = probability of system working

correctly d time units after error occurred.
•  Availability A(t): probability of system working at time t
•  Safety: no harm to be caused
•  Security: confidential and authentic communication

 Even perfectly designed systems can fail if the assumptions
about the workload and possible errors turn out to be wrong.
Making the system dependable must not be an after-thought,
it must be considered from the very beginning

27

Characteristics of Embedded Systems (2)

  Must be efficient
–  Energy efficient
–  Code-size efficient

(especially for systems on a chip)
–  Run-time efficient
–  Weight efficient
–  Cost efficient

  Dedicated towards a certain application
Knowledge about behavior at design time can be used to minimize
resources and to maximize robustness

  Dedicated user interface
(no mouse, keyboard and screen)

  Hybrid systems (analog + digital parts).

28

Characteristics of Embedded Systems (3)

 Many ES must meet real-time constraints
– A real-time system must react to stimuli from the controlled
object (or the operator) within the time interval dictated by the
environment.
– For real-time systems, right answers arriving too late are
wrong.
– „A real-time constraint is called hard, if not meeting that
constraint could result in a catastrophe“ [Kopetz, 1997].
– All other time-constraints are called soft.
– A guaranteed system response has to be explained without
statistical arguments

 Frequently connected to physical environment through sensors
and actuators,

29

SEDA-GIEC

Characteristics of Embedded Systems (4)

  Typically, ES are reactive systems:
„A reactive system is one which is in continual interaction
with is environment and executes at a pace determined by
that environment“ [Bergé, 1995]
Behavior depends on input and current state.
 automata model appropriate,
 model of computable functions inappropriate.

30

Not every ES has all of the above characteristics.

Def.: Information processing systems having most of the above
characteristics are called embedded systems.

Time-to-market

 Often must meet tight deadlines.
  6 month market window is common.
  Can’t miss back-to-school window for calculator.

31

On-time Delayed
entry entry

Peak revenue

Peak revenue from
delayed entry

Market rise Market fall

W 2W

Time

D

On-time

Delayed

R
ev

en
ue

s (
$)

Losses Due to Delayed Market Entry

Simplified revenue model
Product life = 2W, peak at W
Time of market entry defines a
triangle, representing market
penetration
Triangle area equals revenue

Loss
The difference between the on-time
and delayed triangle areas

On-time Delayed
entry entry

Peak revenue

Peak revenue from
delayed entry

Market rise Market fall

W 2W

Time

D

On-time

Delayed

R
ev

en
ue

s (
$)

ECE 692 L01-
Introduction.32

Losses Due to Delayed Market Entry, cont’d.

Area = 1/2 * base * height
On-time = 1/2 * 2W * P
Delayed = 1/2 * (W-D+W)*(W-D)*P/W

Percentage revenue loss = (D(3W-D)/
2W2)*100%
Try some examples

Lifetime 2W=52 wks, delay D=4 wks
(4*(3*26 –4)/2*26^2) = 22%
Lifetime 2W=52 wks, delay D=10 wks
(10*(3*26 –10)/2*26^2) = 50%
Delays are costly!

On-time Delayed
entry entry

Peak revenue

Peak revenue from
delayed entry

Market rise Market fall

W 2W

Time

D

On-time

Delayed

R
ev

en
ue

s (
$)

From Embedded Systems Design: A Unified Hardware/Software Introduction, (c) 2000 Vahid/Givargis

P

ECE 692 L01-
Introduction.33

Development costs
34

Challenges for implementation in hardware

  Lack of flexibility (changing standards).
  Mask cost for specialized HW becomes very expensive

35

Trend
towards
implementation
in Software

Software complexity is a challenge
36

Rob van Ommering, COPA Tutorial, as cited by: Gerrit Müller:
Opportunities and challenges in embedded systems,
Eindhoven Embedded Systems Institute, 2004

 Exponential increase in software
complexity

 In some areas code size is
doubling every 9 months [ST
Microelectronics, Medea Workshop, Fall
2003]

 ... > 70% of the development cost
for complex systems such as
automotive electronics and
communication systems are due
to software development
[A. Sangiovanni-Vincentelli, 1999]

Challenges in embedded system design

 How much hardware do we need?
  How many processors? How big are they? How much memory?

 How do we meet performance requirements?
  What’s in hardware? What’s in software?
  Faster hardware or cleverer software?

 How do we minimize power?
  Turn off unnecessary logic? Reduce memory accesses?

 How do we ship in time?
  Off-the-shelf chips? IP-reuse?

37

More challenges for embedded software
38

  Dynamic environments

  Capture the required behaviour!

  Validate specifications

  Efficient translation of specifications into
implementations!

  How can we check that we meet real-time
constraints?

  How do we validate embedded real-time
software? (large volumes of data, testing
may be safety-critical)

Challenges, etc.

 Does it really work?
  Is the specification correct?
  Does the implementation meet the spec?
  How do we test for real-time characteristics?
  How do we test on real data?

 How do we work on the system?
  Observability, controllability?
  What is our development platform?

 How do we make our ends meet?
 How do we reduce size/weight?

39

Required Designers

 Expertise with both software and hardware is needed to
optimize design metrics
  Not just a hardware or software expert
  A designer must be comfortable with various technologies in

order to choose the best for a given application and constraints
  A designer must be able to communicate with teammates of

various background

40

Design methodologies

  A procedure for designing a system.
  Understanding your methodology helps you ensure you didn’t skip

anything.
  Compilers, software engineering tools, computer-aided design (CAD)

tools, etc., can be used to:
  help automate methodology steps;
  keep track of the methodology itself.

41

Levels of abstraction
42

requirements"

specification"

architecture"

component"
design"
system"

integration"

Top-down vs. bottom-up

 Top-down design:
  start from most abstract description;
  work to most detailed.

 Bottom-up design:
  work from small components to big system.

 Real design uses both techniques.

43

application

component

architecture

Requirements

 Plain language description of what the user wants and
expects to get.

 May be developed in several ways:
  talking directly to customers;
  talking to marketing representatives;
  providing prototypes to users for comment.

44

Functional vs. non-functional
requirements

 Functional requirements:
  output as a function of input.

 Non-functional requirements:
  time required to compute output;
  size, weight, etc.;
  power consumption;
  reliability;
  etc.

45

46

One requirements form

Example: GPS moving map
requirements

 Moving map obtains
position from GPS,
paints map from local
database.

47

lat: 40 13 lon: 32 19

I-78

Sc
ot

ch
 R

oa
d

GPS moving map needs

  Functionality: For automotive use. Show major roads and landmarks.
  User interface: At least 400 x 600 pixel screen. Three buttons max.

Pop-up menu.
  Performance: Map should scroll smoothly. No more than 1 sec power-

up. Lock onto GPS within 15 seconds.
  Cost: $500 street price = approx. $100 cost of goods sold.
  Physical size/weight: Should fit in dashboard.
  Power consumption: 8 hours on 4 AAs

48

GPS moving map requirements form

49

Specification

 A more precise description of the system:
  should not imply a particular architecture;
  provides input to the architecture design process.

 May include functional and non-functional elements.
 May be executable or may be in mathematical form for

proofs.

50

GPS specification

 Should include:
  What is received from GPS;
  map data;
  user interface;
  operations required to satisfy user requests;
  background operations needed to keep the system running.

51

Architecture design

 What major components go satisfying the specification?
 Hardware components:

  CPUs, peripherals, etc.

 Software components:
  major programs and their operations.

 Must take into account functional and non-functional
specifications.

52

GPS moving map block diagram
53

GPS
receiver

search
engine renderer

user
interface database

display

GPS moving map hardware architecture
54

GPS
receiver

CPU

panel I/O

display frame
buffer

memory

GPS moving map software architecture
55

position database
search renderer

timer user
interface

pixels

Designing hardware and software
components

 Must spend time architecting the system before you start
coding.

 Some components are ready-made, some can be
modified from existing designs, others must be designed
from scratch.

56

System integration

 Put together the components.
  Many bugs appear only at this stage.

 Have a plan for integrating components to uncover bugs
quickly, test as much functionality as early as possible.

57

Traditional Embedded System Design

  SW and HW partitioning is decided at an early stage
  Using commodity components, board level design

58

Software Hardware

Compiler!

Assembler!

Linker!

Binary on uController Off-the-shelf
hardware

Application
Function

Implementation

HW/SW Codesign Style

  An integrated design flow of hardware and software
  Often targeting SoCs, not constrained by commodity components

59

Application

Software Hardware

Compilation, etc.! Synthesis!

Virtual prototype

Cosimulation!

HW/SW
Partitioning

Performance
Estimation

Hardwired
Components

Processor +
Binary Code System-on-

chip

Summary

 Embedded computers are all around us.
  Many systems have complex embedded hardware and software.

 Embedded systems pose many design challenges: design
time, deadlines, power, etc.

 Design methodologies help us manage the design
process.

60

