Espectroscopia Vibracional

Introducción

T ≥ 0 K moléculas en continuo movimiento

Cambios periódicos en distancias y ángulos de enace

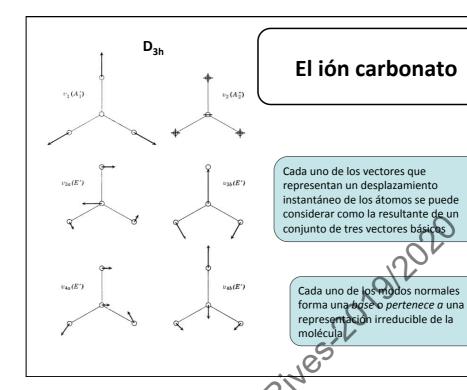
Los movimientos de vibración *aparentemente al azar* son el resultado de la superposición de movimientos vibratorios simples llamados *vibraciones normales* o *modos normales de vibración*

Grados de libertad vibracional

3N-6 moléculas no lineales 3N-5 moléculas lineales

fortaleza del enlace

masa reducida de átomos implicados

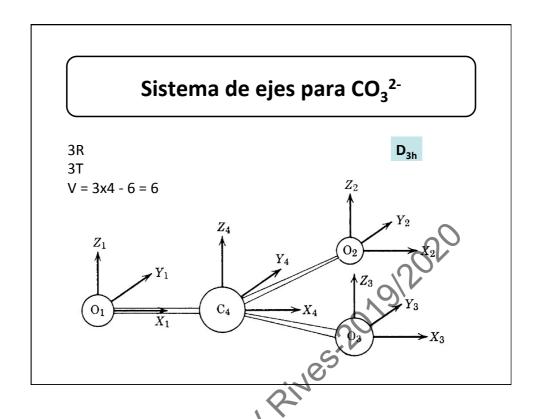


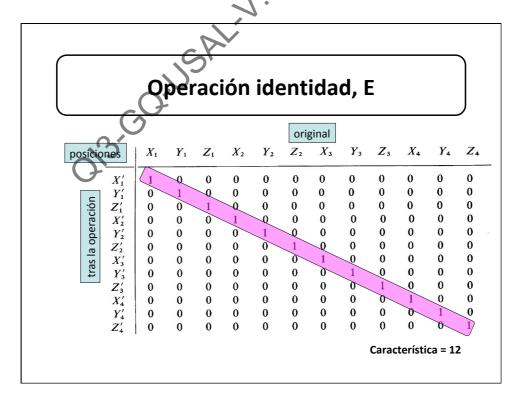
Descripción de las vibraciones

Pueden escogerse dos conjuntos de *vectores-base* para el estudio de los movimientos de los átomos:

(incluyen R y T)

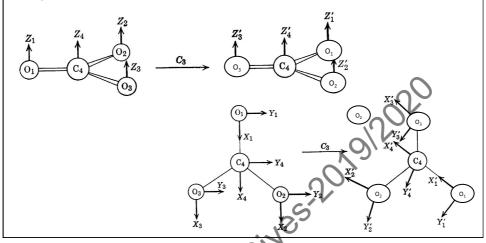
- -tres pequeños vectores en las direcciones (x,y,z) para cada átomo
- -vectores asociados a cambios en las distancias y ángulos de enlace (coordenadas internas)





Operación rotación C₃¹

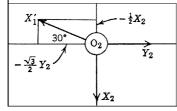
Eje C₃ coincide con eje z a través del átomo de carbono



Matriz de transformación para C₃¹

Los vectores asociados a lo átomos que cambian de posición contribuyen 0 al carácter de la representación

	X ₁	Y ₁	Z ₁	X ₂	Y 2	Z_2	X 3	Y 3	Z_3	X4	Y4	Zı
X_1'	0	0	0	$-\frac{1}{2}$	$-\sqrt{\frac{3}{2}}$	0	0	0	0	0	0	0
Z_1'	0	0	0	$\sqrt{\frac{3}{2}}$	$-\frac{1}{2}$	0	0	0	0	0	0	0
Z_1'	0	0	0	0	0	1	0	0	0	0	0	0
X_2'	0	0	0	0	0	0	$-\frac{1}{2}$	$-\sqrt{\frac{3}{2}}$	0	0	0	0
Y_2'	0	0	0	0	0	0	$\sqrt{\frac{3}{2}}$	$-\frac{1}{2}$	0	0	0	0
Z_2'	0	0	0	0	0	0	0	0	1	0	0	0
$X_3^{'}$	$-\frac{1}{2}$	$-\sqrt{\frac{3}{2}}$	0	0	0	0	0	0	0	0	0	0
Z_3'	$\sqrt{\frac{3}{2}}$	$-\frac{1}{2}$	0	0	0	0	0	0	0	0	0	0
Z_3'	0	0	1	0	0	0	0	0	0	2	0	0_
X_4'	0	0	0	0	0	0	0	0	0	$\left(-\frac{1}{2}\right)$	$\sqrt{\frac{3}{2}}$	0
Y_4'	0	0	0	0	0	0	0	0	0	V	$-\frac{1}{2}$	2
Z'_4	0	0	0	0	0	0	0	0	0	0	B	1)
										carb	ono	



Para C₃ los tres atomos de oxigeno intercambian sus posiciones

característica = 0

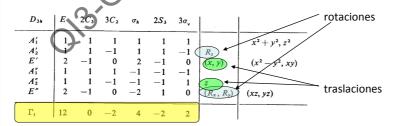
Matriz de transformación para C₂(O1)

Este eje C₂ pasa por el carbono y el O(1)

Los oxigenos O(2) y O(3) intercambian posiciones

	<i>X</i> ₁	Y_1	Z_1	X ₄	Y_4	Z_4
X ₁ ' Y ₁ ' Z ₁ ' X ₄ ' Y ₄ ' Z ₄ '	0	0 -1 0	0 0 -1	1 0 0	20	0 0 -1

Tabla de caracteres para D_{3h}



irreducible
$$\Gamma_t = A_1' + A_2' + 3E' + 2A_2'' + E''$$

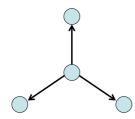
$$T = E' + A''_{2}$$

$$R = E'' + A'_2$$

vibraciones

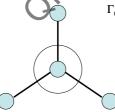
$$\Gamma_g = A_1' + 2E' + A_2''$$

Coordenadas internas para CO₃²distancias de enlace



 $\Gamma_{\text{C-O}} = A'_{1} + E'_{1}$

Coordenadas internas para CO₃²⁻: ángulos de enlace



$$\Gamma_{\text{O-C-O}} = A'_1 + E'$$

A'₁ corresponde a que los tres ángulos aumentan o disminuyen simultáneamente, lo cual es imposible (*coordenada redundante*)

$$\Gamma_{\text{O-C-O}} = E'$$

$$\Gamma_g = A_1' + 2E' + A_2''$$

A"₂ corresponderá a una deformación angular fuera del plano

Reglas de selección

Todas las funciones de onda correspondientes a vibraciones normales en su estado fundamental, Y_i⁰, son bases para la <u>representación totalmente simétrica</u> del grupo puntual al que pertenece la molécula

Una transición fundamental

$$\psi^0_{\nu} \rightarrow \psi^j_{\nu}$$

será activa si el producto directo correspondiente a la integral

$$\int \psi^0_{\nu} P \psi^{j}_{\nu} d\tau$$

contiene a la representación totalmente simétrica

La representación completamente simétrica es el elemento neutro del producto directo. Por tanto, es preciso que la representación del estado excitado coincida con la del operador de momento de transición, P

P = operador de dipolo eléctrico (x,y,z) IR

P = tensor de polarizabilidad (funciones cuadráticas y de producto)

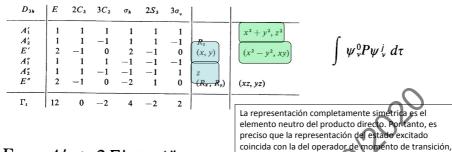
roducto directo

Los caracteres de la representación de un producto directo son iguales a los productos de los caracteres de las representaciones basadas en los conjuntos individuales de funciones

$C_{4\nu}$	E	C_2	$2C_4$	$2\sigma_{\nu}$	$2\sigma_d$
$\overline{A_1}$	1	1	1	1	1
A_2	1	1	1	-1	-1
B_1	1	1	-1	1	-1
B_2	1	1	-1	-1	1
E	2	-2	0	0	0
A_1A_2	1	1	1	-1	-1
B_1E	2	-2	0	0	0
A_1EB_2	2	-2	0	0	0
E^2	4	4	0	0	0

$$A_1A_2 = A_2$$
 $E^2 = A_1 + A_2 + B_1 + B_2$
 $B_1E = E$
 $A_1EB_2 = E$ reducir

Actividad IR y Raman de CO₃²⁻



$$\Gamma_g = A_1' + 2E' + A_2''$$

- IR IR R -

3 bandas

dos coincident 3 bandas

Principio de exclusión mutua

En moléculas con centro de inversión las representaciones generadas por *x*, *y*, *z* son de tipo *u* (antisimétricas respecto al centro de inversión *i*).

Las representaciones generadas por funciones $\it cuadr\'aticas$ o producto serán de tipo $\it g$.

En moléculas centrosimétricas los modos activos en Raman no lo son en infrarrojo, y viceversa

PERO: puede haber vibraciones inactivas tanto en infrarrojo como en Raman

Sobretono, banda combinación y banda caliente

sobretono

Banda por excitación desde el estado fundamental al segundo o superior estado excitado

banda combinación

Banda por excitación simultánea de dos o más modos desde el estado fundamental

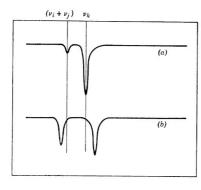
banda caliente

Banda por excitación desde un estado excitado

Habitualmente más débiles que las bandas fundamentales

La actividad se deduce por el producto directo

Resonancia de Fermi



 $v_i + v_j \approx v_k$ Dos bandas (habitualmente una fundamental y otra combinación o sobretono) con la misma simetría y energías parecidas

Interacción (como OA/OM)

$$\begin{vmatrix} (v_i + v_j) - v & W_{ij,k} \\ W_{ij,k} & v \end{vmatrix} = 0$$

magnitud de la interacción

$$W_{ij,k} = \int \Psi_{ij} W \Psi_k d\tau$$

Funciones de las nuevas bandas

$$\Psi'_{ij} = N(\Psi_{ij} + x\Psi_k) \qquad \Psi'_k = N(\Psi_k + x\Psi_{ij})$$

Resonancia de Fermi

Se registran dos nuevas bandas por encima y por debajo de las posiciones teóricas y con un trasvase de intensidad desde la fundamental al sobretono o combinación

CO₂

$$v_2$$
 667 667 x 2 = 1334 667
 v_1 1350 1285 1388
 v_3 2350 2350

Ejemplo: N₂F₂

C _{2h}	E	C ₂	i	a _k		
A, B, A, B,	1 1 1	1 -1 1 -1	1 1 -1 -1	1 -1 -1 1	R _z R _x , R _y z x, y	x^2, y^2, z^2, xy xz, yz

$$\Gamma = 4A_g + 2B_g + 2A_u + 4B_u$$

$$R+T \qquad \underline{A_g} + 2B_g + A_u + 2B_u$$

$$vib \qquad 3A_g + A_u + 2B_u$$

$$R \qquad IR \qquad IR$$

agrupaciones atómicas "no equivalentes" $C_{2h} \mid E \quad C_2 \quad G_h$

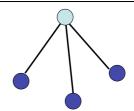
C_{2h}	E	C_2	1	σ_h) *
Γ_{NF} Γ_{NNF} Γ_{NN}	2 2		0 0 1	2 2 1	$= A_g + B_u$ $= A_g + B_u$ $= A_g$

Se pueden tratar por separado

principio de exclusión mutua

A,: deformación fuera del plano

Ejemplo: NH₃



$$\begin{array}{c|cccc} C_{3\nu} & C_{3} & 3\sigma_{\nu} \\ \hline & 12 & 0 & 2 \\ \end{array}$$

R+T =
$$A_1 + A_2 + 2E$$

vib $2A_1 + 2E$

 $\Gamma = 3A_1 + A_2 + 4E$

	$C_{3\nu}$	E	$2C_3$	$3\sigma_{\nu}$	
distancias de enlace ángulos de enlace	$\Gamma_{AB} \ \Gamma_{\delta}$	3	0	1 1	A ₁ + E A ₁ + E

Ejemplo: SF₆

					$3C_2(=C_4^2)$	i	$6S_4$	$8S_6$	$3\sigma_h$	$6\sigma_d$
Γ	21	20	$-1 \\ 0 \\ 2$	3	-3	-3	-1	0	5	3
$\Gamma_{ m SF}$	-6	-0	0	2	2	0	0	0	4	2
Γ_{FSF} (12	0	2	0	0	0	0	0	4	2

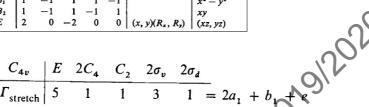
E	8C ₃	6 <i>C</i> ₂	6C4	$3C_2(=C_4^2)$	i	6S ₄	8S ₆	$3\sigma_k$	6σ₄		
1	1	1	1	1	1	1	1	1	1		$x^2 + y^2 + z^2$
1	1	-1	-1	1	1	-1	1	1	-1		
2	-1	0	0	2	2	0	-1	2	0		$(2z^2-x^2-y^2,x^2-y^2)$
3	0	-1	1	-1	3	1	0	-1	-1	(R_x, R_y, R_z)	1000
3	0	1	-1	-1	3	-1	0	-1	1		(xz, yz, xy)
1	1	1	1	1	-1	-1	-1	-1	-1		
1	1	-1	-1	1	-1	1	-1	-1	1		
2	-1	0	0	2	-2	0	1	-2	0		
3	0	-1	1	-1	-3	-1	0	1	1	(x, y, z)	
3	0	1	-1	-1	-3	1	0	1	-1	W. W	

$$\Gamma = A_{1g} + E_g + T_{1g} + 3T_{1u} + T_{2g} + T_{2u}$$

$$\Gamma_{FSF} = A_{1g} + E_g + T_{1u}$$

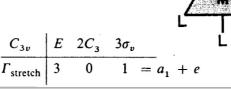
$$\Gamma_{FSF} = A_{1g} + E_g + T_{2g} + T_{1u} + T_{2u}$$

C40	E	2 <i>C</i> ₄	C_2	2σ,	$2\sigma_d$		
A1	1	1	1	1	1	z	$x^2 + y^2, z^2$
A2	1	1	1	-1	-1	R_z	
B_1	1	-1	1	1	-1		x^2-y^2
B ₂	1	-1	1	-1	1		xy
E	2	0	-2	0	0	$(x, y)(R_x, R_y)$	(xz, yz)

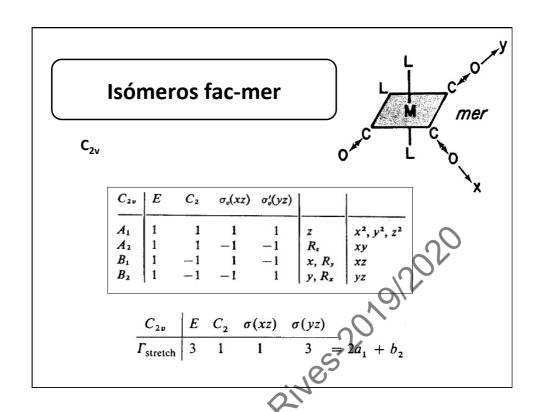


Isómeros fac-mer

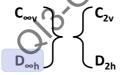
C_{3v}



C30	E	$2C_3$	$3\sigma_v$		
A ₁ A ₂ E	1	1	1	z	$x^2 + y^2, z^2$
A ₂	1	1	-1	R _z	
E	2	-1	0	$(x, y)(R_x, R_y)$	$(x^2-y^2,xy)(xz,yz)$



Moléculas lineales

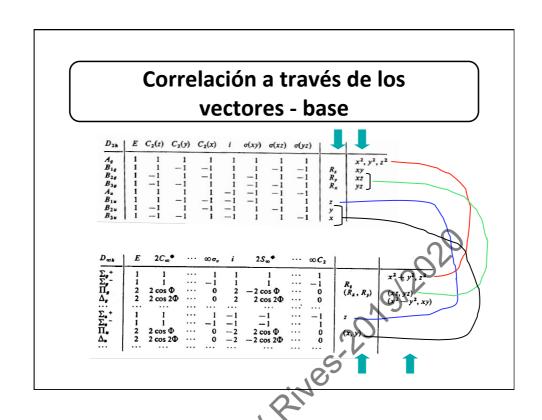


$$O = C = C = C = O$$

$$\Gamma_{\rm t}$$
 = 2A_g + 3B_{1u} + 2B_{2g} + 3B_{2u} + 2B_{3g} + 3B_{3u}

$$R + T = B_{1u} + B_{2u} + B_{3u} + B_{2g} + B_{3g}$$

vibraciones = $2A_g + 2B_{1u} + B_{2g} + 2B_{2u} + B_{3g} + 2B_{3u}$



Moléculas lineales

D_{2h}	Vector base	$D_{\infty h}$
A_g	z^2	Σ_{g}^{+}
B _{2g}	xz	п
B _{3g}	yz }	Π_{g}
B _{1u}	z	$\Sigma_{u}^{\ +}$
B _{2u}	у	п
B _{3u}	x S	Π_{u}

vib =
$$2 \Sigma_g^+ + 2 \Sigma_u^+ + \Pi_g + 2 \Pi_u$$

R IR R IR

